Skip to main content
Log in

Building intuition of iron evolution during solar cell processing through analysis of different process models

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An important aspect of Process Simulators for photovoltaics is prediction of defect evolution during device fabrication. Over the last twenty years, these tools have accelerated process optimization, and several Process Simulators for iron, a ubiquitous and deleterious impurity in silicon, have been developed. The diversity of these tools can make it difficult to build intuition about the physics governing iron behavior during processing. Thus, in one unified software environment and using self-consistent terminology, we combine and describe three of these Simulators. We vary structural defect distribution and iron precipitation equations to create eight distinct Models, which we then use to simulate different stages of processing. We find that the structural defect distribution influences the final interstitial iron concentration ([\(\hbox {Fe}_i\)]) more strongly than the iron precipitation equations. We identify two regimes of iron behavior: (1) diffusivity-limited, in which iron evolution is kinetically limited and bulk [\(\hbox {Fe}_i\)] predictions can vary by an order of magnitude or more, and (2) solubility-limited, in which iron evolution is near thermodynamic equilibrium and the Models yield similar results. This rigorous analysis provides new intuition that can inform Process Simulation, material, and process development, and it enables scientists and engineers to choose an appropriate level of Model complexity based on wafer type and quality, processing conditions, and available computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Synopsys, Inc., Sentaurus Device User Guide pp. 1–1284 (2010)

  2. Silvaco, Inc., Atlas User’s Manual (2014)

  3. D.A. Clugston, P.A. Basore, in Proceedings of the 26th IEEE PVSC (Anaheim, 1997), pp. 207–210

  4. P.A. Basore, K. Cabanas-Holmen, IEEE J. Photovolt. 1(1), 72 (2011)

    Article  Google Scholar 

  5. Y. Liu, D. Heinzel, A. Rockett, in Proceedings of the 35th IEEE PVSC (Honolulu, 2010), pp. 1943–1947

  6. M. Burgelman, J. Verschraegen, S. Degrave, P. Nollet, Prog. Photovolt. Res. Appl. 12(23), 143 (2004)

    Article  Google Scholar 

  7. G. Coletti, Prog. Photovolt. Res. Appl. 21, 1163 (2013)

    Google Scholar 

  8. A.A. Istratov, T. Buonassisi, R.J. McDonald, A.R. Smith, R. Schindler, J.A. Rand, J.P. Kalejs, E.R. Weber, J. Appl. Phys. 94(10), 6552 (2003)

    Article  ADS  Google Scholar 

  9. G. Zoth, W. Bergholz, J. Appl. Phys. 67(11), 6764 (1990)

    Article  ADS  Google Scholar 

  10. M.C. Schubert, H. Habenicht, W. Warta, IEEE J. Photovolt. 1(2), 168 (2011)

    Article  Google Scholar 

  11. A.A. Istratov, H. Hieslmair, E.R. Weber, Appl. Phys. A Mater. Sci. Process. 69(1), 13 (1999)

    Article  ADS  Google Scholar 

  12. T. Buonassisi, A.A. Istratov, M.D. Pickett, M. Heuer, J.P. Kalejs, G. Hahn, M.A. Marcus, B. Lai, Z. Cai, S.M. Heald, T.F. Ciszek, R.F. Clark, D.W. Cunningham, A.M. Gabor, R. Jonczyk, S. Narayanan, E. Sauar, E.R. Weber, Prog. Photovolt. Res. Appl. 14(6), 513 (2006)

    Article  Google Scholar 

  13. T. Buonassisi, A.A. Istratov, M.D. Pickett, J.P. Rakotoniaina, O. Breitenstein, M.A. Marcus, S.M. Heald, E.R. Weber, J. Cryst. Growth 287(2), 402 (2006)

    Article  ADS  Google Scholar 

  14. D. Macdonald, A. Cuevas, A. Kinomura, Y. Nakano, L.J. Geerligs, J. Appl. Phys. 97(3), 033523 (2005)

    Article  ADS  Google Scholar 

  15. T. Buonassisi, A.A. Istratov, M. Heuer, M.A. Marcus, R. Jonczyk, J. Isenberg, B. Lai, Z. Cai, S. Heald, W. Warta, R. Schindler, G. Willeke, E.R. Weber, J. Appl. Phys. 97(7), 074901 (2005)

    Article  ADS  Google Scholar 

  16. S.A. McHugo, H. Hieslmair, E.R. Weber, Appl. Phys. A Mater. Sci. Process. 64(2), 127 (1997)

    Article  ADS  Google Scholar 

  17. J. Tan, D. Macdonald, N. Bennett, D. Kong, A. Cuevas, I. Romijn, Appl. Phys. Lett. 91(4), 043505 (2007)

    Article  ADS  Google Scholar 

  18. D.P. Fenning, J. Hofstetter, A.E. Morishige, D.M. Powell, A. Zuschlag, G. Hahn, T. Buonassisi, Adv. Energy Mater. 4(13), 1400459 (2014)

    Article  Google Scholar 

  19. D.P. Fenning, A.S. Zuschlag, M.I. Bertoni, B. Lai, G. Hahn, T. Buonassisi, J. Appl. Phys. 113(21), 214504 (2013)

    Article  ADS  Google Scholar 

  20. W. Kwapil, J. Schön, F. Schindler, W. Warta, M.C. Schubert, IEEE J. Photovolt. 4(3), 791 (2014)

    Article  Google Scholar 

  21. M. Seibt, H. Hedemann, A.A. Istratov, F. Riedel, A. Sattler, W. Schröter, Phys. Status Solidi (A) 171, 301 (1999)

    Article  ADS  Google Scholar 

  22. C. del Cañizo, A. Luque, J. Electrochem. Soc. 147(7), 2685 (2000)

    Article  Google Scholar 

  23. H. Hieslmair, S. Balasubramanian, A.A. Istratov, E.R. Weber, Semicond. Sci. Technol. 16(7), 567 (2001)

    Article  ADS  Google Scholar 

  24. A.L. Smith, K. Wada, L.C. Kimerling, J. Electrochem. Soc. 147(3), 1154 (2000)

    Article  Google Scholar 

  25. A. Haarahiltunen, H. Savin, M. Yli-Koski, H. Talvitie, M.I. Asghar, J. Sinkkonen, Mater. Sci. Eng. B 159–160, 248 (2009)

    Article  Google Scholar 

  26. J. Schön, H. Habenicht, M.C. Schubert, W. Warta, J. Appl. Phys. 109(6), 063717 (2011)

    Article  ADS  Google Scholar 

  27. J. Hofstetter, D.P. Fenning, M.I. Bertoni, J.F. Lelièvre, Cd Cañizo, T. Buonassisi, Prog. Photovolt. Res. Appl. 19(4), 487 (2011)

    Article  Google Scholar 

  28. R. Chen, B. Trzynadlowski, S.T. Dunham, J. Appl. Phys. 115(5), 054906 (2014)

    Article  ADS  Google Scholar 

  29. A.A. Istratov, H. Hieslmair, E.R. Weber, Appl. Phys. A Mater. Sci. Process. 70(5), 489 (2000)

    Article  ADS  Google Scholar 

  30. D. Macdonald, L.J. Geerligs, Appl. Phys. Lett. 85(18), 4061 (2004)

    Article  ADS  Google Scholar 

  31. J. Schmidt, B. Lim, D. Walter, K. Bothe, S. Gatz, T. Dullweber, P.P. Altermatt, IEEE J. Photovolt. 3(1), 114 (2013)

    Article  Google Scholar 

  32. M. Kittler, J. Lärz, W. Seifert, M. Seibt, W. Schröter, Appl. Phys. Lett. 58(9), 911 (1991)

    Article  ADS  Google Scholar 

  33. Y. Yoon, B. Paudyal, J. Kim, Y.W. Ok, P. Kulshreshtha, S. Johnston, G. Rozgonyi, J. Appl. Phys. 111(3), 033702 (2012)

    Article  ADS  Google Scholar 

  34. S. Martinuzzi, O. Palais, S. Ostapenko, Mater. Sci. Semicond. Process. 9(1–3), 230 (2006)

    Article  Google Scholar 

  35. M. Kittler, W. Seifert, K. Knobloch, Microelectron. Eng. 66(1–4), 281 (2003)

    Article  Google Scholar 

  36. A. Cuevas, S. Riepe, M.J. Kerr, D.H. Macdonald, G. Coletti, F. Ferrazza, in Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on (2003), pp. 1312–1315

  37. L.J. Geerligs, Y. Komatsu, I. Röver, K. Wambach, I. Yamaga, T. Saitoh, J. Appl. Phys. 102(9), 093702 (2007)

    Article  ADS  Google Scholar 

  38. A.E. Morishige, D.P. Fenning, J. Hofstetter, M. Ann Jensen, S. Ramanathan, C. Wang, B. Lai, T. Buonassisi, in Proceedings of the 40th IEEE PVSC (Denver, 2014), pp. 3004–3007

  39. F.S. Ham, J. Phys. Chem. Solids 6(4), 335 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  40. M. Aoki, A. Hara, A. Ohsawa, J. Appl. Phys. 72(3), 895 (1992)

    Article  ADS  Google Scholar 

  41. M. Seibt, D. Abdelbarey, V. Kveder, C. Rudolf, P. Saring, L. Stolze, O. Voß, Mater. Sci. Eng. B 159–160, 264 (2009)

    Article  Google Scholar 

  42. H. Hieslmair, A.A. Istratov, T. Heiser, E.R. Weber, J. Appl. Phys. 84(2), 713 (1998)

    Article  ADS  Google Scholar 

  43. J.D. Murphy, R.J. Falster, J. Appl. Phys. 112(11), 113506 (2012)

    Article  ADS  Google Scholar 

  44. A. Bentzen, A. Holt, J.S. Christensen, B.G. Svensson, J. Appl. Phys. 99(6), 064502 (2006)

    Article  ADS  Google Scholar 

  45. T.Y. Tan, P.S. Plekhanov, S. Joshi, R. Gafiteanu, U.M. Gösele, in Eighth Workshop on Crystalline Silicon Solar Cell Materials and Process (Copper Mountain, 1998), pp. 42–49

  46. H.M. You, U.M. Gösele, T.Y. Tan, J. Appl. Phys. 74(4), 2461 (1993)

    Article  ADS  Google Scholar 

  47. A. Haarahiltunen, H. Savin, M. Yli-Koski, H. Talvitie, J. Sinkkonen, J. Appl. Phys. 105(2), 023510 (2009)

    Article  ADS  Google Scholar 

  48. P. Zhang, H. Väinölä, A.A. Istratov, E.R. Weber, Phys. B Condens. Matter 340–342, 1051 (2003)

    Article  Google Scholar 

  49. K. Hartman, M. Bertoni, J. Serdy, T. Buonassisi, Appl. Phys. Lett. 93(12), 122108 (2008)

    Article  ADS  Google Scholar 

  50. D. McDonald, A. Cuevas, 16th European Photovoltaic Solar Energy Conference (2000)

  51. D. Franke, in Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on (2003), pp. 1344–1347

  52. B. Wu, N. Stoddard, R. Ma, R. Clark, J. Cryst. Growth 310(7–9), 2178 (2008)

    Article  ADS  Google Scholar 

  53. A. Jouini, D. Ponthenier, H. Lignier, N. Enjalbert, B. Marie, B. Drevet, E. Pihan, C. Cayron, T. Lafford, D. Camel, Prog. Photovolt. Res. Appl. 20(6), 735 (2011)

    Article  Google Scholar 

  54. T. Ervik, G. Stokkan, T. Buonassisi, Ø. Mjøs, O. Lohne, Acta Mater. 67(C), 199 (2014)

    Article  Google Scholar 

  55. M.G. Tsoutsouva, V.A. Oliveira, D. Camel, T.N.T. Thi, J. Baruchel, B. Marie, T.A. Lafford, J. Cryst. Growth 401(C), 397 (2014)

    Article  Google Scholar 

  56. L. Gong, F. Wang, Q. Cai, D. You, B. Dai, Solar Energy Mater. Solar Cells 120(PA), 289 (2014)

    Article  Google Scholar 

  57. I. Guerrero, V. Parra, T. Carballo, A. Black, M. Miranda, D. Cancillo, B. Moralejo, J. Jiménez, J.F. Lelièvre, C. del Cañizo, Prog. Photovolt. Res. Appl. 22(8), 923 (2012)

    Article  Google Scholar 

  58. K.M. Han, Hd Lee, J.S. Cho, S.H. Park, J.H. Yun, K.H. Yoon, J.S. Yoo, J. Korean Phys. Soc. 61(8), 1279 (2012)

    Article  ADS  Google Scholar 

  59. X. Gu, X. Yu, K. Guo, L. Chen, D. Wang, D. Yang, Solar Energy Mater. Solar Cells 101(C), 95 (2012)

    Article  Google Scholar 

  60. R.B. Bergmann, Appl. Phys. A 69(2), 187 (1999)

    Article  ADS  Google Scholar 

  61. D.M. Powell, J. Hofstetter, D.P. Fenning, R. Hao, T.S. Ravi, T. Buonassisi, Appl. Phys. Lett. 103(26), 263902 (2013)

    Article  ADS  Google Scholar 

  62. M. Keller, S. Reber, N. Schillinger, D. Pocza, M. Arnold, J. Nanosci. Nanotechnol. 11(9), 8024 (2011)

    Article  Google Scholar 

  63. H.M. Branz, C.W. Teplin, M.J. Romero, I.T. Martin, Q. Wang, K. Alberi, D.L. Young, P. Stradins, Thin Solid Films 519(14), 4545 (2011)

    Article  ADS  Google Scholar 

  64. Y.M. Yang, A. Yu, B. Hsu, W.C. Hsu, A. Yang, C.W. Lan, Prog. Photovolt. Res. Appl. 23(3), 340 (2013)

    Article  Google Scholar 

  65. G. Hahn, A. Schönecker, J. Phys. Condens. Matter 16(50), R1615 (2004)

    Article  ADS  Google Scholar 

  66. A. Schönecker, L.J. Geerligs, A. Müller, Solid State Phenom. 95–96, 149 (2004)

    Article  Google Scholar 

  67. B. Michl, J. Schön, W. Warta, M.C. Schubert, IEEE J. Photovolt. 3(2), 635 (2013)

    Article  Google Scholar 

  68. S.A. McHugo, A.C. Thompson, G. Lamble, C. Flink, E.R. Weber, Phys. B Condens. Matter 273–274, 371 (1999)

    Article  Google Scholar 

  69. A. Bentzen, A. Holt, R. Kopecek, G. Stokkan, J.S. Christensen, B.G. Svensson, J. Appl. Phys. 99(9), 093509 (2006)

    Article  ADS  Google Scholar 

  70. D. Macdonald, J. Tan, T. Trupke, J. Appl. Phys. 103(7), 073710 (2008)

    Article  ADS  Google Scholar 

  71. S. Riepe, I.E. Reis, W. Kwapil, M.A. Falkenberg, J. Schön, H. Behnken, J. Bauer, D. Kreßner-Kiel, W. Seifert, W. Koch, Phys. Status Solidi (C) 8(3), 733 (2010)

    Article  ADS  Google Scholar 

  72. M. M’Hamdi, Thermo-mechanical analysis of multicrystalline silicon ingot casting. Tech. rep. (2007)

  73. J. Hofstetter, D.P. Fenning, D.M. Powell, A.E. Morishige, H. Wagner, T. Buonassisi, IEEE J. Photovolt. 4(6), 1421 (2014)

    Article  Google Scholar 

  74. J. Hofstetter, D.P. Fenning, J.F. Lelièvre, C. del Cañizo, Phys. Status Solidi (A) 209(10), 1861 (2012)

    Article  ADS  Google Scholar 

  75. J.F. Lelièvre, J. Hofstetter, A. Peral, I. Hoces, F. Recart, C. del Cañizo, Energy Proc. 8, 257 (2011)

    Article  Google Scholar 

  76. G. Coletti, R. Kvande, V.D. Mihailetchi, L.J. Geerligs, L. Arnberg, E.J. Ovrelid, J. Appl. Phys. 104(10), 104913 (2008)

    Article  ADS  Google Scholar 

  77. V. Vähänissi, M. Yli-Koski, A. Haarahiltunen, H. Talvitie, Y. Bao, H. Savin, Solar Energy Mater. Solar Cells 114(C), 54 (2013)

    Article  Google Scholar 

  78. M. Kivambe, D.M. Powell, S. Castellanos, M.A. Jensen, A.E. Morishige, K. Nakajima, K. Morishita, R. Murai, T. Buonassisi, J. Cryst. Growth 407(C), 31 (2014)

    Article  ADS  Google Scholar 

  79. Y. Tao, Y.W. Ok, F. Zimbardi, A.D. Upadhyaya, J.H. Lai, S. Ning, V.D. Upadhyaya, A. Rohatgi, IEEE J. Photovolt. 4(1), 58 (2014)

    Article  Google Scholar 

  80. P. Rothhardt, S. Meier, S. Maier, K. Jiang, A. Wolf, D. Biro, IEEE J. Photovolt. 4(3), 827 (2014)

    Article  Google Scholar 

  81. A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, Hoboken, 2011)

    Google Scholar 

  82. D.P. Fenning, J. Hofstetter, M.I. Bertoni, G. Coletti, B. Lai, C. del Cañizo, T. Buonassisi, J. Appl. Phys. 113(4), 044521 (2013)

    Article  ADS  Google Scholar 

  83. K. Graf, Metal Impurities in Silicon-Device Fabrication (Springer, Berlin, 2012)

    Google Scholar 

  84. M.B. Shabani, T. Yamashita, E. Morita, Solid State Phenom. 131, 399 (2008)

    Article  Google Scholar 

  85. M.D. Pickett, T. Buonassisi, Appl. Phys. Lett. 92(12), 122103 (2008)

    Article  ADS  Google Scholar 

  86. M. Rinio, A. Yodyunyong, S. Keipert-Colberg, Y.P.B. Mouafi, D. Borchert, A. Montesdeoca-Santana, Prog. Photovolt. Res. Appl. 19(2), 165 (2010)

    Article  Google Scholar 

  87. R. Krain, S. Herlufsen, J. Schmidt, Appl. Phys. Lett. 93(15), 152108 (2008)

    Article  ADS  Google Scholar 

  88. D.P. Fenning, J. Hofstetter, M.I. Bertoni, S. Hudelson, M. Rinio, J.F. Lelièvre, B. Lai, C. del Cañizo, T. Buonassisi, Appl. Phys. Lett. 98(16), 162103 (2011)

    Article  ADS  Google Scholar 

  89. S. Martinuzzi, Solar Energy Mater. Solar Cells 80(3), 343 (2003)

    Article  Google Scholar 

  90. D. Abdelbarey, V. Kveder, W. Schröter, M. Seibt, Appl. Phys. Lett. 94(6), 061912 (2009)

    Article  ADS  Google Scholar 

  91. M. Loghmarti, R. Stuck, J.C. Muller, D. Sayah, P. Siffert, Appl. Phys. Lett. 62(9), 979 (1993)

    Article  ADS  Google Scholar 

  92. D. Macdonald, A. Cheung, A. Cuevas, in Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on (2003), pp. 1336–1339

  93. V. Vähänissi, A. Haarahiltunen, M. Yli-Koski, H. Savin, IEEE J. Photovolt. 4(1), 142 (2014)

    Article  Google Scholar 

  94. D.P. Fenning, V. Vähänissi, J. Hofstetter, A.E. Morishige, H.S. Laine, A. Haarahiltunen, S. Castellanos, M.A. Jensen, B. Lai, H. Savin, in Proceedings of the 40th IEEE PVSC (Denver, 2014)

  95. J. Schön, A. Haarahiltunen, H. Savin, D.P. Fenning, T. Buonassisi, W. Warta, M.C. Schubert, IEEE J. Photovolt. 3(1), 131 (2013)

    Article  Google Scholar 

  96. M.C. Schubert, J. Schön, B. Michl, A. Abdollahinia, W. Warta, in Proceedings of the 38th IEEE PVSC (Austin, 2012), pp. 286–291

  97. J.S. Chang, G. Cooper, J. Comput. Phys. 6(1), 1 (1970)

    Article  ADS  MATH  Google Scholar 

  98. S.T. Dunham, Appl. Phys. Lett. 63(4), 464 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  99. A. Haarahiltunen, H. Väinölä, O. Anttila, M. Yli-Koski, J. Sinkkonen, J. Appl. Phys. 101(4), 043507 (2007)

    Article  ADS  Google Scholar 

  100. A. Haarahiltunen, H. Talvitie, H. Savin, O. Anttila, M. Yli-Koski, M.I. Asghar, J. Sinkkonen, J. Mater. Sci. Mater. Electron. 19(S1), 41 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation (NSF) and the Department of Energy (DOE) under NSF CA No. EEC-1041895. Authors from Aalto University acknowledge the financial support from Finnish Technology Agency under the project “PASSI” (project No. 2196/31/2011). A. E. Morishige’s research visit to Aalto University in 2013 was supported by the Academy of Finland under the project “Low-Cost Photovoltaics.” Authors from Fraunhofer ISE acknowledge the financial support by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety within the research cluster “SolarWinS” (contract No. 0325270A-H). A. E. Morishige acknowledges Niall Mangan (MIT) for helpful discussions and the financial support of the Department of Defense through the NDSEG fellowship program. H. S. Laine acknowledges the financial support of the Finnish Cultural Foundation through grant No. 00150504. J. Hofstetter acknowledges support by the A. von Humboldt Foundation through a Feodor Lynen Postdoctoral Fellowship. C. del Cañizo acknowledges the support of the Department of Mechanical Engineering at Massachusetts Institute of Technology through the Peabody Visiting Professorship and the Real Colegio Complutense at Harvard University through a RCC Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley E. Morishige.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1.26 MB)

Appendices

Appendix 1: Simulating iron precipitate nucleation sites

In all eight Models, including those with grain boundaries, iron-silicide precipitates are assumed to nucleate at precipitation sites along dislocations. In the 2D Models, the heterogeneously distributed intra-grain dislocations are in clusters, each of which has a dislocation density \(N_{\rm{DL}}(x,y) = C \exp (-\frac{1}{2}(\frac{(y-y_0)^2}{L})^3-\frac{1}{2} (\frac{(x-x_0)^2}{L})^3)\) where C is the peak precipitation site density in the dislocation, parameter \(L = 15\) μm adjusts how fast the dislocation density is reduced from the center of the cluster, and \(x_{0}\) and \(y_{0}\) are randomly chosen coordinates that determine the location of the centrum of the dislocation cluster. C is scaled so that the average dislocation density per area is \(N_{\rm{avg}} = 8\times 10^{3}\ \hbox {cm}^{-2}\) within the grain. Then, the dislocation density of grid points with dislocation density \(<\!10\) cm−2 is set to zero. The grain boundary is modeled as a dense band of dislocations with an areal density of \(2\times 10^{8}\ \hbox {cm}^{-2}\). The simulated grain boundary width is 10 μm, which is unrealistically wide, but it is still less than 1 % of the grain width, and for computational reasons we use this value. Most importantly, this grain boundary width paired with the dislocation density in the grain boundary preserves an accurate number of total dislocations and therefore precipitation sites at the grain boundary [95]. The precipitation site density, \(N_{\rm{site}}\), is proportional to the dislocation density, \(N_{\rm{DL}}\), as in \(N_{\rm{site}} = 3.3\times 10^{5}\ \hbox {cm}^{-1}\times \ N_{\rm{DL}}\) [26].

Appendix 2: Detailed description of precipitation equations Model Element

Ham’s law [39] describes all the precipitates as spheres with a single average number of atoms/precipitate, \(n_{\rm{avg}}\). The input parameter is the precipitate density, \(N_{\rm{p}}\). The time evolution of the precipitated iron concentration, [Fe p ], depends on g(\(n_{\rm{avg}}\)) and d(\(n_{\rm{avg}}\)), the precipitate size-dependent precipitate growth and dissolution rates, respectively. \(C_{\mathrm{Fe}}\) is the interstitial iron concentration, and \(D_{\mathrm{Fe}}\) is the iron diffusivity. \(r_{\mathrm{c}}\) is the size-dependent capture radius of the precipitates. The capture radius determines how close to the center of the precipitates the dissolved iron atoms need to be in order to attach to the iron precipitate. The capture radius and local equilibrium iron concentration are defined differently in the two precipitation approaches. For the Ham’s law Model, the equilibrium iron concentration, \(C_{\mathrm{Eq}}\), is the solid solubility of iron, \(C_{\mathrm{S}}\), as defined in [40]. The precipitates are modeled as spheres with the volume of a unit cell containing a single iron atom in a \(\beta\)-FeSi\(_2\) precipitate, \(V_{\mathrm{p}} = 3.91\times 10^{23}\ \hbox {cm}^{3}\). These equations are summarized in the left-hand column of Table 1.

Table 1 Equations for precipitation behavior Model Element

The Fokker–Planck equation-based precipitation Model analyzes precipitates with a distribution of sizes and assigns a different spatial density for each size [25, 96]. The input parameter is the density of precipitation sites, \(N_{\mathrm{prec}}\). The density of precipitates with n atoms is f(n), and the total density of precipitates is \(N_{\mathrm{p}} = \int _{1}^{n_{\mathrm{max}}=10^{10}} f(n) dn\), where \(n_{\mathrm{max}}\) is the maximum precipitate size. The time evolution of the precipitate distribution, f(n), is described by the FPE [25], and it is numerically solved with Cooper and Chang’s method [97]. The factor \(A(n,t)=g(n,t)-d(n,t)\) is the net growth rate of the precipitates, and the factor \(B(n,t)=\frac{1}{2} [g(n,t)+d(n,t)]\) describes random fluctuations in the precipitate size. The boundary conditions, \(f(n=n_{\mathrm{max}}, t)\) and \(f(n=1,t)\), are defined in Table 1, \(p_1 = 1\times 10^4\) is a fitting parameter, and \(f(n=0,t)\) is the density of empty precipitation sites. \(f(n=1,t)\) describes which fraction of these sites contains an iron atom, i.e., where nucleation occurs. The Gibbs free energy of a precipitate with n atoms is \(\Delta G(n)\) [98], where \(E_{\mathrm{a}}\) is an energy parameter that accounts for all changes in surface energy and strain caused by the growth and dissolution of precipitates. It has been assumed to be independent of n and has been estimated in [99]. Assuming that precipitation is diffusivity-limited, the equilibrium concentration in the proximity of a precipitate is the dissolved iron concentration when \(\frac{\partial \Delta G}{\partial n} = 0\). The precipitate size-dependent equilibrium iron concentration, \(C_{\mathrm{Eq}}\), depends on the solid solubility of iron, \(C_{\mathrm{S}}\), and the factor in the exponential captures the fact that iron has a higher chemical potential in a small cluster than in a large cluster [25]. Precipitates are modeled as flat disks [98] with thickness \(a=20\) nm, and the capture radius of the precipitation site is explicitly accounted for [100]. Due to the inclusion of the size of the precipitation site, the FPE Model predicts higher capture radii at small precipitate sizes, and due to the faster expansion of 2D disks compared to 3D spheres, the growth of the capture radius remains faster at large precipitate sizes. These equations are summarized in the right-hand column of Table 1.

Note that for large precipitate sizes (n \(\gg 1\)), \(C_{\mathrm{Eq}}\approx C_{\mathrm{S}}\) and the two precipitation models predict similar equilibrium concentrations. However, when modeling small precipitates, the models differ. The expression for the Gibbs free energy predicts a temperature- and dissolved iron concentration-dependent critical size \(n_{\mathrm{crit}}\), defined as the size that maximizes \(\Delta G(n)\). Thermodynamics dictates that precipitates smaller than \(n_{\mathrm{crit}}\) tend to dissolve, whereas precipitates larger than \(n_{\mathrm{crit}}\) tend to grow. The energy needed for the precipitates to cross from the dissolution-favoring regime into the growth regime is defined as the nucleation barrier. In the FPE precipitation Model, a certain level of local supersaturation is needed for nucleation to occur; however, in the Ham’s law Model, there is no nucleation barrier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morishige, A.E., Laine, H.S., Schön, J. et al. Building intuition of iron evolution during solar cell processing through analysis of different process models. Appl. Phys. A 120, 1357–1373 (2015). https://doi.org/10.1007/s00339-015-9317-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9317-7

Keywords

Navigation