Skip to main content
Log in

Sizing of Mo nanoparticles synthesised by Kr–F laser pulse photo-dissociation of Mo(CO)6

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, the laser-based synthesis and characterization of Mo nanoparticles formed using Kr–F laser pulse photolysis of the vapor of Mo(CO)6 diluted by argon at room temperature were carried out. The time-resolved laser-induced incandescence (Ti–Re LII) technique was applied for the sizing of aerosolized particle inside of the quartz reactor. The samples of synthesized Mo nanoparticles were analyzed by transmission electron microscopy (TEM). The particle sizes measured by Ti–Re LII were found to be in a range of 3–13 nm in dependence on excimer Kr–F laser pulse energy and number of pulses. The temperature time behavior of laser-heated nanoparticles was observed by two-color pyrometry at the wavelengths 400 and 610 nm. The maximum particle temperature attained at high laser fluences was attributed to evaporation temperature and was found to be around 3,900 K unlike the boiling temperature of bulk Mo (4,800 K). The probable influence of nanoparticle properties on the results of Ti–Re LII sizing and nanoparticle oxidation in air on the results of TEM measurements is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Moisala, A.G. Nasibulin, E.I. Kauppinen, J. Phys. Condens. Matter 15, S3011 (2003)

    Article  ADS  Google Scholar 

  2. Y. Li, J. Liu, Y. Wang, Z.L. Wang, Chem. Mater. 13, 1008 (2001)

    Article  Google Scholar 

  3. R.J. Saia, B. Gorowitz, J. Electrochem. Soc. 135, 2795 (1988)

    Article  Google Scholar 

  4. S. Chen, R.S. Ingram, M.J. Hostetler, J.J. Pietron, R.W. Murray, T.G. Schaaff, J.T. Khoury, M.M. Alvarez, R.L. Whetten, Science 280, 2098 (1998)

    Article  ADS  Google Scholar 

  5. L. Li, J. Hu, W. Yang, A.P. Alivisatos, Nano Lett. 1, 349 (2001)

    Article  ADS  Google Scholar 

  6. T.R. Fletcher, R.N. Rosenfeld, J. Am. Chem. Soc. 117, 2203 (1985)

    Article  Google Scholar 

  7. M. Poliakoff, E. Weitz, Adv. Organomet. Chem. 25, 277 (1986)

    Google Scholar 

  8. J.A. Ganske, R.N. Rosenfeld, J. Phys. Chem. 93, 1959 (1989)

    Article  Google Scholar 

  9. A.V. Evseev, S.V. Kamayev, R.H. Sharipov, Laser Chem. 16, 101 (1995)

    Article  Google Scholar 

  10. C. Vollmer, E. Redel, K. Abu-Shandi, R. Thomann, H. Manyar, C. Hardacre, C. Janiak, Chem. Eur. J. 16, 3849 (2010)

    Article  Google Scholar 

  11. Y. Murakami, T. Sugatani, Y. Nosaka, J. Phys. Chem. A 109, 8994 (2005)

    Article  Google Scholar 

  12. Ch. Schulz, B. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333 (2006)

    Article  ADS  Google Scholar 

  13. E.V. Gurentsov, A.V. Eremin, Nanotechnol. Russia 4, 319 (2009)

    Article  Google Scholar 

  14. A.V. Eremin, E.V. Gurentsov, K.Y. Priemchenko, J. Nanopart. Research. 15, 1737 (2013)

    Article  Google Scholar 

  15. T. Sipkens, G. Joshi, K.J. Daun, Y. Murakami, J. Heat Transf. 135, 0524401 (2013)

    Article  Google Scholar 

  16. A. Eremin, E. Gurentsov, E. Popova, K. Priemchenko, Appl. Phys. B 104, 285 (2011)

    Article  ADS  Google Scholar 

  17. L.A. Melton, Appl. Opt. 23, 2201 (1984)

    Article  ADS  Google Scholar 

  18. E. Gurentsov, A. Eremin, High Temp. 49, 667 (2011)

    Article  Google Scholar 

  19. M.W. Chase Jr, J. Phys. Chem. Ref. Data 9, 1 (1998)

    Google Scholar 

  20. R.S. Hixson, M.A. Winkler, Int. J. Thermophys. 13, 477 (1992)

    Article  ADS  Google Scholar 

  21. V.E. Zinoviev, Thermophysical properties of metals at high temperatures (Moscow, Metallurgiya, 1989), pp. 257–258

    Google Scholar 

  22. H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003)

    Article  ADS  Google Scholar 

  23. S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak, Appl. Phys. B 83, 397 (2006)

    Article  ADS  Google Scholar 

  24. F. Liu, K.J. Daun, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 355 (2006)

    Article  ADS  Google Scholar 

  25. K.J. Daun, T.A. Sipkens, J.T. Titantah, M. Karttunen, Appl. Phys. B 112, 409 (2013)

    Article  ADS  Google Scholar 

  26. G.J. Smallwood, D.R. Snelling, F. Liu, Ö.L. Gülder, Trans. ASME 123, 814 (2001)

    Article  Google Scholar 

  27. P.D. Desai, J. Phys. Chem. Ref. Data 16, 91 (1987)

    Article  ADS  Google Scholar 

  28. P. Roth, A.V. Filippov, J. Aerosol Sci. 27, 95 (1996)

    Article  Google Scholar 

  29. A.V. Filippov, M.W. Markus, P. Roth, J. Aerosol Sci. 30, 71 (1999)

    Article  Google Scholar 

  30. K.K. Nanda, A. Maisels, F.E. Kruis, H. Fissan, S. Stappert, Phys. Rev. Lett. 91, 106102-1 (2003)

    Article  ADS  Google Scholar 

  31. F.W. Vahldiek, R.E. Pence, J. Less-Common Met. 13, 448 (1967)

    Article  Google Scholar 

  32. S.M. Deshpande, Thin Solid Films 39, 125 (1976)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Russian Foundation for Basic Research (Grant No. 14-08-00505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Gurentsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremin, A.V., Gurentsov, E.V. Sizing of Mo nanoparticles synthesised by Kr–F laser pulse photo-dissociation of Mo(CO)6 . Appl. Phys. A 119, 615–622 (2015). https://doi.org/10.1007/s00339-015-9000-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9000-z

Keywords

Navigation