Skip to main content
Log in

Dynamics of ultrashort pulsed laser radiation induced non-thermal ablation of graphite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report on the dependence of a laser radiation induced ablation process of graphite on the applied pulse duration of ultrashort pulsed laser radiation smaller than 4 ps. The emerging so-called non-thermal ablation process of graphite has been confirmed to be capable to physically separate ultrathin graphitic layers from the surface of pristine graphite bulk crystal. This allows the deposition of ablated graphitic flakes on a substrate in the vicinity of the target. The observed ablation threshold determined at different pulse durations shows a modulation, which we ascribe to lattice motions along the c axis that are theoretically predicted to induce the non-thermal ablation process. In a simple approach, the ablation threshold can be described as a function of the energy penetration depth and the absorption of the applied ultrashort pulsed laser radiation. Based on the analysis of the pulse duration dependence of those two determining factors and the assumption of an invariant ablation process, we are able to reproduce the pulse duration dependence of the ablation threshold. Furthermore, the observed pulse duration dependences confirm the assumption of a fast material specific response of graphite target subsequent to optical excitation within the first 2 ps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A.C. Ferrari, Mater. Today 15, 564 (2012)

    Article  Google Scholar 

  2. P. Kumar, RSC Adv. 3, 11987 (2013)

    Article  Google Scholar 

  3. M. Reininghaus, D. Wortmann, J. Finger, O. Faley, R. Poprawe, C. Stampfer, Appl. Phys. Lett. 100, 151606 (2012)

    Article  ADS  Google Scholar 

  4. H. Jeschke, M. Garcia, K. Bennemann, Phys. Rev. Lett. 87, 015003 (2001)

    Article  ADS  Google Scholar 

  5. Y. Miyamoto, H. Zhang, D. Tománek, Phys. Rev. Lett. 104, 208302 (2010)

    Article  ADS  Google Scholar 

  6. H.O. Jeschke, M.E. Garcia, Appl. Surf. Sci. 197–198, 107 (2002)

    Article  Google Scholar 

  7. A. Marinopoulos, L. Reining, A. Rubio, V. Olevano, Phys. Rev. B 69, 245419 (2004)

    Article  ADS  Google Scholar 

  8. F. Carbone, P. Baum, P. Rudolf, A. Zewail, Phys. Rev. Lett. 100, 035501 (2008)

    Article  ADS  Google Scholar 

  9. N. Bonini, M. Lazzeri, N. Marzari, F. Mauri, Phys. Rev. Lett. 99, 176802 (2007)

    Article  ADS  Google Scholar 

  10. F. Carbone, G. Aubock, A. Cannizzo, F. van Mourik, R.R. Nair, A.K. Geim, K.S. Novoselov, M. Chergui, Chem. Phys. Lett. 504, 37 (2011)

    Article  ADS  Google Scholar 

  11. F. Carbone, Chem. Phys. Lett. 496, 291 (2010)

    Article  ADS  Google Scholar 

  12. K. Ishioka, M. Hase, M. Kitajima, L. Wirtz, A. Rubio, H. Petek, Phys. Rev. B 77, 121402 (2008)

    Article  ADS  Google Scholar 

  13. T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, M. Wolf, Phys. Rev. Lett. 95, 187403 (2005)

    Article  ADS  Google Scholar 

  14. I. Chatzakis, H. Yan, D. Song, S. Berciaud, T.F. Heinz, Phys. Rev. B 83, 205411 (2011)

    Article  ADS  Google Scholar 

  15. M. Lenner, A. Kaplan, C. Huchon, R. Palmer, Phys. Rev. B 79, 184105 (2009)

    Article  ADS  Google Scholar 

  16. T. Mishina, K. Nitta, Y. Masumoto, Phys. Rev. B 62, 2908 (2000)

    Article  ADS  Google Scholar 

  17. R. Nicklow, N. Wakabayashi, H.G. Smith, Phys. Rev. B 5, 4951 (1972)

    Article  ADS  Google Scholar 

  18. H. Yan, D. Song, K.F. Mak, I. Chatzakis, J. Maultzsch, T.F. Heinz, Phys. Rev. B 80, 121403 (2009)

  19. J.M. Liu, Opt. Lett. 7, 196 (1982)

    Article  ADS  Google Scholar 

  20. B.N. Chichkov, C.S. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996)

    Article  ADS  Google Scholar 

  21. K. Sokolowski-Tinten, S. Kudryashov, V. Temnov, J. Bialkowski, M. Boing, D.V. Linde, A. Cavalleri, in Femtosecond laser-induced ablation of graphite, Optical Society of America, Ultrafast Phenomena, vol. 43 (2000)

  22. D.H. Reitze, H. Ahn, M.C. Downer, Phys. Rev. B 45, 2677 (1992)

    Article  ADS  Google Scholar 

  23. R. Raman, Y. Murooka, C.-Y. Ruan, T. Yang, S. Berber, D. Tománek, Phys. Rev. Lett. 101, 077401 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank the Deutsche Forschungsgemeinschaft (DFG) for financial funding of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reininghaus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reininghaus, M., Kalupka, C., Faley, O. et al. Dynamics of ultrashort pulsed laser radiation induced non-thermal ablation of graphite. Appl. Phys. A 117, 1873–1878 (2014). https://doi.org/10.1007/s00339-014-8864-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8864-7

Keywords

Navigation