Skip to main content
Log in

Combined effects of defects and hydroxyl groups on the electronic transport properties of reduced graphene oxide

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of four typical defects on the hydroxyl groups’ migration and the conductivity of graphene have been studied using density functional theory and nonequilibrium Green’s function formalism. An obvious anisotropy of the diffusion barriers along different paths is correlated to the symmetric behavior of spin-polarized charge density around the defects. The migration energy scenario indicates that the defects effectively hinder the hydroxyl groups’ migration toward them, indicating that most hydroxyl groups could be stabilized outside the defect region in reduced graphene oxide. Through the electronic transport calculations and local density of states analysis, hydroxyl groups locating outside of the defect region will cause the transport channels near the Fermi level to disappear and reduce the conductance considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. A.K. Geim, Science 324, 1530 (2009)

    Article  ADS  Google Scholar 

  3. S.F. Pei, H.M. Cheng, Carbon 50, 3210 (2012)

    Article  Google Scholar 

  4. H.A. Becerril, J. Mao, Z.F. Liu, R.M. Stoltenberg, Z.N. Bao, Y.S. Chen, ACS Nano 2, 463 (2008)

    Article  Google Scholar 

  5. X.L. Li, H.L. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H.J. Dai, J. Am. Chem. Soc. 131, 15939 (2009)

    Article  Google Scholar 

  6. S.F. Pei, J.P. Zhao, J.H. Du, W.C. Ren, H.M. Cheng, Carbon 48, 4466 (2010)

    Article  Google Scholar 

  7. Y.W. Zhu, W.W. Cai, R.D. Piner, A. Velamakanni, R.S. Ruoff, Appl. Phys. Lett. 95, 103104 (2009)

    Article  ADS  Google Scholar 

  8. K. Krishnamoorthy, M. Veerapandian, R. Mohan, S.J. Kim, Appl. Phys. A 106, 501 (2012)

    Article  ADS  Google Scholar 

  9. T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, I. Dékány, Chem. Mater. 18, 2740 (2006)

    Article  Google Scholar 

  10. H.K. Jeong, Y.P. Lee, R.J.W.E. Lahaye, M.H. Park, K.H. An, I.J. Kim, C.W. Yang, C.Y. Park, R.S. Ruoff, Y.H. Lee, J. Am. Chem. Soc. 130, 1362 (2008)

    Article  Google Scholar 

  11. F.C. Liu, T. Tang, Q. Feng, M. Li, Y. Liu, N.J. Tang, W. Zhong, Y.W. Du, J. Appl. Phys. 115, 164307 (2014)

    Article  ADS  Google Scholar 

  12. J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J.M.D. Tascón, Langmuir 25, 5957 (2009)

    Article  Google Scholar 

  13. S. Park, R.S. Ruoff, Nat. Nanotech. 4, 217 (2009)

    Article  ADS  Google Scholar 

  14. C. Gómez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Nano Lett. 7, 3499 (2007)

    Article  ADS  Google Scholar 

  15. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, Carbon 45, 1558 (2007)

    Article  Google Scholar 

  16. S. Gilje, S. Han, M. Wang, K.L. Wang, R.B. Kaner, Nano Lett. 7, 3394 (2007)

    Article  ADS  Google Scholar 

  17. D.X. Yang, A. Velamakanni, G. Bozoklu, S.J. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice Jr, R.S. Ruoff, Carbon 47, 145 (2009)

    Article  Google Scholar 

  18. Y.P. Zhang, D.L. Li, X.J. Tan, B. Zhang, X.F. Ruan, H.J. Liu, C.X. Pan, L. Liao, T.Y. Zhai, Y. Bando, S.S. Chen, W.W. Cai, R.S. Ruoff, Carbon 54, 143 (2013)

    Article  Google Scholar 

  19. S. Kim, S. Zhou, Y.K. Hu, M. Acik, Y.J. Chabal, C. Berger, W. de Heer, A. Bongiorno, E. Riedo, Nat. Mater. 11, 544 (2012)

    Article  ADS  Google Scholar 

  20. P.V. Kumar, M. Bernardi, J.C. Grossman, ACS Nano 7, 1638 (2013)

    Article  Google Scholar 

  21. C. Gómez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, U. Kaiser, Nano Lett. 10, 1144 (2010)

    Article  ADS  Google Scholar 

  22. A. Bagri, R. Grantab, N.V. Medhekar, V.B. Shenoy, J. Phys. Chem. C 114, 12053 (2010)

    Article  Google Scholar 

  23. A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, V.B. Shenoy, Nat. Chem. 2, 581 (2010)

    Article  Google Scholar 

  24. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  25. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  26. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  27. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    Article  ADS  Google Scholar 

  28. G. Kresse, J. Hafner, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  29. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  30. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  31. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  32. G. Henkelman, H. Jónsson, J. Chem. Phys. 113, 9978 (2000)

    Article  ADS  Google Scholar 

  33. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejón, D. Sanchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002)

    Article  ADS  Google Scholar 

  34. M. Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  35. A. Svizhenko, M.P. Anantram, T.R. Govindan, B. Biegel, R. Venugopal, J. Appl. Phys. 91, 2343 (2002)

    Article  ADS  Google Scholar 

  36. K. Saloriutta, A. Uppstu, A. Harju, M.J. Puska, Phys. Rev. B 86, 235417 (2012)

    Article  ADS  Google Scholar 

  37. F. Banhart, J. Kotakoski, A.V. Krasheninnikov, ACS Nano 5, 26 (2011)

    Article  Google Scholar 

  38. A.W. Robertson, G.D. Lee, K. He, E. Yoon, A.I. Kirkland, J.H. Warner, Nano Lett. 14, 3972 (2014)

    Article  ADS  Google Scholar 

  39. A.W. Robertson, B. Montanari, K. He, C.S. Allen, Y.A. Wu, N.M. Harrison, A.I. Kirkland, J.H. Warner, ACS Nano 7, 4495 (2013)

    Article  Google Scholar 

  40. N. Ghaderi, M. Peressi, J. Phys. Chem. C 114, 21625 (2010)

    Article  Google Scholar 

  41. S.B. Tang, S.Y. Zhang, Chem. Phys. 392, 33 (2012)

    Article  ADS  Google Scholar 

  42. H.J. Xiang, E. Kan, S.H. Wei, M.H. Whangbo, J.L. Yang, Nano Lett. 9, 4025 (2009)

    Article  ADS  Google Scholar 

  43. Y.W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006)

    Article  ADS  Google Scholar 

  44. G. Lee, K.S. Kim, K. Cho, J. Phys. Chem. C 115, 9719 (2011)

    Article  Google Scholar 

  45. Y.F. Dai, S. Ni, Z.Y. Li, J.L. Yang, J. Phys. Condens. Matter 25, 405301 (2013)

    Article  ADS  Google Scholar 

  46. H.M. Huang, Z.B. Li, J.C. She, W.L. Wang, J. Appl. Phys. 111, 054317 (2012)

    Article  ADS  Google Scholar 

  47. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  MATH  Google Scholar 

  48. A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard III, J. Phys. Chem. A 112, 1040 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported National Basic Research Program of China (2013CB934800), National Natural Science Foundation of China (Grant Nos. 51302094 and 51101064), and Fundamental Research Funds for the Central Universities, HUST (2014TS037). Rong Chen acknowledges the Thousand Young Talents Plan and Program for Changjiang Scholars and Innovative Research Team in University. The calculations are done at the Texas Advanced Computing Center (TACC) in the University of Texas in Austin (http://www.tacc.utexas.edu).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Chen or Rong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wen, Y., Shan, B. et al. Combined effects of defects and hydroxyl groups on the electronic transport properties of reduced graphene oxide. Appl. Phys. A 118, 885–892 (2015). https://doi.org/10.1007/s00339-014-8805-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8805-5

Keywords

Navigation