Skip to main content
Log in

ZnO–TiO2 nanocomposites formed under submerged DC arc discharge: preparation, characterization and photocatalytic properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A rutile TiO2 (α-TiO2) and hexagonal wurtzite ZnO nanocomposite was directly and synchronously synthesized via arc discharge method submerged in de-ionized water. In correlation with the detailed characterization of the morphology, and crystalline structure of the prepared ZnO–TiO2 nanocomposites, the UV–visible and photoluminescence properties were studied. X-ray diffraction and transmission electron microscopy investigations revealed the co-existence of α-TiO2 and hexagonal wurtzite ZnO phases with the ZnO and α-TiO2 nanoparticles are in nanorod and nanospheres morphologies, respectively. The diameters of the synthesized nanocomposite particles are in the range of 5–70 nm. Interestingly, the as-prepared ZnO–TiO2 nanocomposite shows better photocatalytic activity for photodegradation of the methylene blue dye than both of pure ZnO and TiO2 nanocatalyts. This work would explore feasible routes to synthesize efficient metal or/and metal oxide nanocomposites for degrading organic pollutants, gas sensing or other related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N.K. Perkgoz et al., Photocatalytic hybrid nanocomposites of metal oxide nanoparticles enhanced towards the visible spectral range. Appl. Catal. B 105(1–2), 77–85 (2011)

    Article  Google Scholar 

  2. H.S. Bae et al., Photo detecting properties of ZnO-based thin-film transistors. Appl. Phys. Lett. 83(25), 5313–5315 (2003)

    Article  ADS  Google Scholar 

  3. U. Özgür et al., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 041301 (2005)

    Article  ADS  Google Scholar 

  4. A.M. Azad et al., High-temperature immittance response in anatase-based sensor materials. J. Am. Ceram. Soc. 77(12), 3145–3152 (1994)

    Article  Google Scholar 

  5. T. Ohno et al., Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl. Catal A-General 244(2), 383–391 (2003)

    Article  Google Scholar 

  6. P. Hoyer, H. Weller, Size-dependent redox potentials of quantized zinc-oxide measured with an optically transparent thin-layer electrode. Chem. Phys. Lett. 221(5–6), 379–384 (1994)

    ADS  Google Scholar 

  7. J. Demerchant, M. Cocivera, Preparation and doping of zinc-oxide using spray-pyrolysis. Chem. Mater. 7(9), 1742–1749 (1995)

    Article  Google Scholar 

  8. T. Maruyama, J. Shionoya, Zinc-oxide thin-films prepared by chemical vapor-deposition from zinc acetate. J. Mater. Sci. Lett. 11(3), 170–172 (1992)

    Article  Google Scholar 

  9. M. Izaki, T. Omi, Transparent zinc oxide films prepared by electrochemical reaction. Appl. Phys. Lett. 68(17), 2439–2440 (1996)

    Article  ADS  Google Scholar 

  10. J.U. Brehm, M. Winterer, H. Hahn, Synthesis and local structure of doped nanocrystalline zinc oxides. J. Appl. Phys. 100(6), 064311 (2006)

    Google Scholar 

  11. H. Wang et al., Large-scale synthesis of single-walled carbon nanohorns by submerged arc. Nanotechnology 15(5), 546–550 (2004)

    Article  ADS  Google Scholar 

  12. N. Sano et al., Nanotechnology—synthesis of carbon ‘onions’ in water. Nature 414(6863), 506–507 (2001)

    ADS  Google Scholar 

  13. N. Sano et al., Fabrication of inorganic molybdenum disulfide fullerenes by arc in water. Chem. Phys. Lett. 368(3–4), 331–337 (2003)

    ADS  Google Scholar 

  14. A.A. Ashkarran et al., ZnO nanoparticles prepared by electrical arc discharge method in water. Mater. Chem. Phys. 118(1), 6–8 (2009)

    Google Scholar 

  15. L.F. Dong, Z.L. Cui, Z.K. Zhang, Gas sensing properties of nano-ZnO prepared by arc plasma method. Nanostruct. Mater. 8(7), 815–823 (1997)

    Google Scholar 

  16. F. Fang, et al., UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method. Nanotechnology 20(24), 245502 (2009)

    Google Scholar 

  17. V. Eskizeybek, A. Avci, M. Chhowalla, Structural and optical properties of CdO nanowires synthesized from Cd(OH)(2) precursors by calcination. Cryst. Res. Technol. 46(10), 1093–1100 (2011)

    Google Scholar 

  18. V. Eskizeybek et al., Synthesis and characterization of cadmium hydroxide nanowires by arc discharge method in de-ionized water. J. Nanopart. Res. 13(10), 4673–4680 (2011)

    Google Scholar 

  19. V. Eskizeybek, E.S. Karabulut, A. Avci, Synthesis of carbon nanostructures and CaCO3 nanoparticles by arc discharge in mineral water. J. Nano Res. 15, 57–67 (2011)

    Google Scholar 

  20. R. Comparelli et al., Photocatalytic degradation of methyl-red by immobilised nanoparticles of TiO2 and ZnO. Water Sci. Technol. 49(4), 183–188 (2004)

    Google Scholar 

  21. G. Marci et al., Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 1. Surface and bulk characterization. J. Phys. Chem. B 105(5), 1026–1032 (2001)

    Google Scholar 

  22. Z.H. Zhang et al., Preparation of photocatalytic nano-ZnO/TiO2 film and application for determination of chemical oxygen demand. Talanta 73(3), 523–528 (2007)

    Google Scholar 

  23. G. Liu et al., Titania-based photocatalysts-crystal growth, doping and heterostructuring. J. Mater. Chem. 20(5), 831–843 (2010)

    ADS  Google Scholar 

  24. S. Sakthivel et al., Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol. Energy Mater. Sol. Cells 77(1), 65–82 (2003)

    Google Scholar 

  25. C.W. Zou et al., Preparation and enhanced photoluminescence property of ordered ZnO/TiO2 bottlebrush nanostructures. Chem. Phys. Lett. 476(1–3), 84–88 (2009)

    ADS  Google Scholar 

  26. H.R. Pant et al., Synthesis, characterization, and photocatalytic properties of ZnO nano-flower containing TiO2 NPs. Ceram. Int. 38(4), 2943–2950 (2012)

    Google Scholar 

  27. C. Hariharan, Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: revisited. Appl. Catal. A-General 304(1), 55–61 (2006)

    Google Scholar 

  28. S. Banerjee et al., Physics and chemistry of photocatalytic titanium dioxide: visualization of bactericidal activity using atomic force microscopy. Curr. Sci. 90(10), 1378–1383 (2006)

    Google Scholar 

  29. S. Chakrabarti, B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. 112(3), 269–278 (2004)

    Google Scholar 

  30. G. Mascolo et al., Photocatalytic degradation of methyl red by TiO(2): comparison of the efficiency of immobilized nanoparticles versus conventional suspended catalyst. J. Hazard. Mater. 142(1–2), 130–137 (2007)

    Google Scholar 

  31. C. Lizama et al., Optimized photodegradation of reactive blue 19 on TiO2 and ZnO suspensions. Catal. Today 76(2–4), 235–246 (2002)

    Google Scholar 

  32. N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol. A-Chem. 162(2–3), 317–322 (2004)

    Google Scholar 

  33. S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J. Hazard. Mater. 141(3), 581–590 (2007)

    Google Scholar 

  34. V. Eskizeybek et al., Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl. Catal. B-Environ. 119, 197–206 (2012)

    Google Scholar 

  35. F. Liu et al., Well-aligned zinc oxide nanorods and nanowires prepared without catalyst. J. Cryst. Growth 274(1–2), 126–131 (2005)

    ADS  Google Scholar 

  36. N. Sano et al., Carbon nanohorns hybridized with a metal-included nanocapsule. Carbon 42(1), 95–99 (2004)

    Google Scholar 

  37. X.P. Huang, C.X. Pan, Large-scale synthesis of single-crystalline rutile TiO2 nanorods via a one-step solution route. J. Cryst. Growth 306(1), 117–122 (2007)

    ADS  MathSciNet  Google Scholar 

  38. A. Toumiat et al., Effect of nitrogen reactive gas on ZnO nanostructure development prepared by thermal oxidation of sputtered metallic zinc. Nanotechnology 17(3), 658–663 (2006)

    ADS  Google Scholar 

  39. Y. Zhao et al., Synthesis and optical properties of TiO2 nanoparticles. Mater. Lett. 61(1), 79–83 (2007)

    Google Scholar 

  40. Y. Liu et al., Length-controlled synthesis of oriented single-crystal rutile TiO2 nanowire arrays. J. Colloid Interface Sci. 363(2), 504–510 (2011)

    Google Scholar 

  41. N.D. Abazovic et al., Photoluminescence of anatase and rutile TiO2 particles. J. Phys. Chem. B 110(50), 25366–25370 (2006)

    Google Scholar 

  42. L. Irimpan, et al., Size dependent fluorescence spectroscopy of nanocolloids of ZnO. J. Appl. Phys. 102(6), 063524 (2007)

    Google Scholar 

  43. Q. Li et al., Photoluminescence and lasing properties of catalyst-free ZnO nanorod arrays fabricated by pulsed laser deposition. J. Phys. Chem. C 116(3), 2330–2335 (2012)

    Google Scholar 

  44. W. Shan, et al., Nature of room-temperature photoluminescence in ZnO. Appl. Phys. Lett. 86(19), 191911 (2005)

    Google Scholar 

  45. C. Wang et al., Preparation and photocatalytic activity of ZnO/TiO2/SnO2 mixture. J. Solid State Chem. 178(11), 3500–3506 (2005)

    ADS  Google Scholar 

  46. G. Akgul et al., Structural properties of zinc oxide and titanium dioxide nanoparticles prepared by chemical vapor synthesis. J. Alloy. Compd. 554, 177–181 (2013)

    Google Scholar 

  47. W.W.-F.L. Carina Chun Pei, Enhanced photocatalytic activity of electrospun TiO2/ZnO nanofibers with optimal anatase/rutile ratio. Catal. Commun. 37, 100–104 (2013)

    ADS  Google Scholar 

  48. C. Karunakaran et al., Preparation and characterization of ZnO–TiO2 nanocomposite for photocatalytic disinfection of bacteria and detoxification of cyanide under visible light. Mater. Res. Bull. 46(10), 1586–1592 (2011)

    Google Scholar 

  49. F.X. Xiao, Construction of highly ordered ZnO–TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application. ACS Appl. Mater. Interfaces 4(12), 7054–7062 (2012)

    Google Scholar 

  50. L.R. Zheng et al., Network structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity. Inorg. Chem. 48(5), 1819–1825 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Avcı.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avcı, A., Eskizeybek, V., Gülce, H. et al. ZnO–TiO2 nanocomposites formed under submerged DC arc discharge: preparation, characterization and photocatalytic properties. Appl. Phys. A 116, 1119–1125 (2014). https://doi.org/10.1007/s00339-013-8194-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8194-1

Keywords

Navigation