Skip to main content
Log in

Density functional theory of transition metal phthalocyanines, I: electronic structure of NiPc and CoPc—self-interaction effects

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present a two-part systematic density functional theory study of the electronic structure of selected transition metal phthalocyanines. We use a semi-local generalized gradient approximation (GGA) functional, as well as several hybrid exchange-correlation functionals, and compare the results to experimental photoemission data. Here, we study the low-spin systems NiPc and CoPc. We show that hybrid functionals provide computed photoemission spectra in excellent agreement with experimental data, whereas the GGA functional fails qualitatively. This failure is primarily because of under-binding of localized orbitals due to self-interaction errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.M. Kadish, K.M. Smith, R. Guilard, Applications of Phthalocyanines. The Porphyrin Handbook, vol 19 (Academic Press, San Diego, 2003)

    Google Scholar 

  2. H. Miyoshi, H. Ohya-Nishiguchi, Y. Deguchi, Bull. Chem. Soc. Jpn. 46, 2724 (1973)

    Google Scholar 

  3. H. Miyoshi, Bull. Chem. Soc. Jpn. 47, 561 (1974)

    Google Scholar 

  4. J.F. Kirner, W. Dow, R. Scheidt, Inorg. Chem. 15, 1685 (1976)

    Google Scholar 

  5. A. Zhao, Q. Li, L. Chen, H. Xiang, W. Wang, S. Pan, B. Wang, X. Xiao, J. Yang, J.G. Hou, Q. Zhu, Science 309, 1542 (2005)

    ADS  Google Scholar 

  6. T. Suzuki, M. Kurahashi, X. Ju, Y. Yamauchi, J. Phys. Chem. B 106, 11553 (2002)

    Google Scholar 

  7. L. Bogani, W. Wernsdorfer, Nat. Mater. 7, 179 (2008)

    ADS  Google Scholar 

  8. S. Sanvito, J. Mater. Chem. 17, 4455 (2007)

    Google Scholar 

  9. N. Marom, O. Hod, G.E. Scuseria, L. Kronik, J. Chem. Phys. 128, 164107 (2008)

    ADS  Google Scholar 

  10. S. Kümmel, L. Kronik, Rev. Mod. Phys. 80, 3 (2008)

    ADS  Google Scholar 

  11. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    ADS  Google Scholar 

  12. N. Marom, L. Kronik, Appl. Phys. A (2008). doi:10.1007/s00339-008-5005-1

  13. A. Rosa, E.J. Baerends, Inorg. Chem. 33, 584 (1994)

    Google Scholar 

  14. A. Rosa, G. Ricciardi, E.J. Baerends, S.J.A. van Gisbergen, J. Phys. Chem. A 105, 3311 (2001)

    Google Scholar 

  15. M.S. Liao, S. Scheiner, J. Comput. Chem. 23, 1391 (2002)

    Google Scholar 

  16. B. Bialek, I.G. Kim, J.I. Lee, Thin Solid Films 513, 110 (2006)

    ADS  Google Scholar 

  17. Z. Shi, J. Zhang, J. Phys. Chem. C 111, 7084 (2007)

    Google Scholar 

  18. B. Bialek, I.G. Kim, J.I. Lee, Synth. Met. 129, 151 (2002)

    Google Scholar 

  19. A.V. Soldatova, J. Kim, X. Peng, A. Rosa, G. Ricciardi, M.E. Kenney, M. Michael, A.J. Rodgers, Inorg. Chem. 46, 2080 (2007)

    Google Scholar 

  20. Z. Hu, B. Li, A. Zhao, J. Yang, J.G. Hou, J. Phys. Chem. C 112, 13650 (2008)

    Google Scholar 

  21. Z. Liu, X. Zhang, Y. Zhang, J. Jiang, Spectrochem. Acta A 67, 1232 (2007)

    ADS  Google Scholar 

  22. P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994)

    Google Scholar 

  23. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) [Erratum: Phys. Rev. Lett. 78, 1396 (1997)]

    ADS  Google Scholar 

  24. J.P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 105, 9982 (1996)

    ADS  Google Scholar 

  25. C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999)

    ADS  Google Scholar 

  26. M. Ernzerhof, G.E. Scuseria, J. Chem. Phys. 110, 5029 (1999)

    ADS  Google Scholar 

  27. J.P. Perdew, A. Ruzsinszky, J. Tao, V.N. Staroverov, G.E. Scuseria, G.I. Csonka, J. Chem. Phys. 123, 062201 (2005)

    ADS  Google Scholar 

  28. Y. Zhao, D.G. Truhlar, Acc. Chem. Res. 41, 157 (2008)

    Google Scholar 

  29. T.S. Ellis, K.T. Park, M.D. Ulrich, S.L. Hulbert, J.E. Rowe, J. Appl. Phys. 100, 093515 (2006)

    ADS  Google Scholar 

  30. M.J. Frisch et al., Gaussian, Inc., Wallingford, CT (2003), using either Revision C. 01wis2 (2004) or Revision E. 01+MNG (2007)

  31. T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989)

    ADS  Google Scholar 

  32. N.B. Balabanov, K.A. Peterson, J. Chem. Phys. 123, 064107 (2005)

    ADS  Google Scholar 

  33. F. Jensen, J. Chem. Phys. 115, 9113 (2001)

    ADS  Google Scholar 

  34. F. Jensen, J. Chem. Phys. 116, 7372 (2002)

    ADS  Google Scholar 

  35. C.J. Schramm, R.P. Scaringe, D.R. Stojakovic, B.M. Hoffman, J.A. Ibers, T.J. Marks, J. Am. Chem. Soc. 102, 6702 (1980)

    Google Scholar 

  36. R. Mason, G.A. Williams, P.E. Fielding, J. Chem, Soc. Dalton, 676 (1979)

  37. W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory (VCH, Weinheim, 2001)

    Google Scholar 

  38. A. Görling, Phys. Rev. A 54, 3912 (1996)

    ADS  Google Scholar 

  39. C. Filippi, C.J. Umrigar, X. Gonze, J. Chem. Phys. 107, 9994 (1997)

    ADS  Google Scholar 

  40. D.P. Chong, O.V. Gritsenko, E.J. Baerends, J. Chem. Phys. 116, 1760 (2002)

    ADS  Google Scholar 

  41. O.V. Gritsenko, E.J. Baerends, J. Chem. Phys. 117, 9154 (2002). Note, however, that eigenvalues of calculations with hybrid functionals are not Kohn–Sham eigenvalues—see Sect. IIB of Ref. [10] for further elaboration

    ADS  Google Scholar 

  42. M.S. Hybertsen, S.G. Louie, Phys. Rev. B 34, 5390 (1986)

    ADS  Google Scholar 

  43. R.O. Jones, O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989)

    ADS  Google Scholar 

  44. J. Hwang, E.G. Kim, J. Liu, J.L. Brédas, A. Duggal, A. Kahn, J. Phys. Chem. C 111, 1378 (2007)

    Google Scholar 

  45. L. Segev, A. Salomon, A. Natan, D. Cahen, L. Kronik, F. Amy, C.K. Chan, A. Kahn, Phys. Rev. B 74, 165323 (2006)

    ADS  Google Scholar 

  46. N. Dori, M. Menon, L. Kilian, M. Sokolowski, L. Kronik, E. Umbach, Phys. Rev. B 73, 195208 (2006)

    ADS  Google Scholar 

  47. J. Paier, M. Marsman, G. Kresse, J. Chem. Phys. 127, 024103 (2007)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leeor Kronik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marom, N., Kronik, L. Density functional theory of transition metal phthalocyanines, I: electronic structure of NiPc and CoPc—self-interaction effects. Appl. Phys. A 95, 159–163 (2009). https://doi.org/10.1007/s00339-008-5007-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-5007-z

PACS

Navigation