, Volume 27, Issue 3, pp 605-615

Remote video bioassays reveal the potential feeding impact of the rabbitfish Siganus canaliculatus (f: Siganidae) on an inner-shelf reef of the Great Barrier Reef

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Herbivores are widely acknowledged as key elements maintaining the health and resilience of terrestrial and aquatic ecosystems. Understanding and quantifying the impact of herbivores in ecosystems are fundamental to our ability to manage these systems. The traditional method of quantifying the impact of herbivorous fishes on coral reefs has been to use transplanted pieces of seagrass or algae as “bioassays”. However, these experiments leave a key question unanswered, namely: Which species are responsible for the impact being quantified? This study revisits the use of bioassays and tested the assumption that the visual abundance of species reflects their role in the removal of assay material. Using remote video cameras to film removal of assay material on an inner-shelf reef of the Great Barrier Reef, the species responsible for assay-based herbivory were identified. The video footage revealed that Siganus canaliculatus, a species not previously recorded at the study site, was primarily responsible for removal of macroalgal biomass. The average percentage decrease in thallus length of whole plants of Sargassum at the reef crest was 54 ± 8.9% (mean ± SE), and 50.4 ± 9.8% for individually presented Sargassum strands (for a 4.5-h deployment). Of the 14,656 bites taken from Sargassum plants and strands across all reef zones, nearly half (6,784 bites or 46%) were taken by S. canaliculatus, with the majority of the remainder attributable to Siganus doliatus. However, multiple regression analysis demonstrated that only the bites of S. canaliculatus were removing macroalgal biomass. The results indicate that, even with detailed observations, the species of herbivore that may be responsible for maintaining benthic community structure can go unnoticed. Some of our fundamental ideas of the relative importance of individual species in ecosystem processes may be in need of re-evaluation.

Communicated by Biology Editor Dr Mark McCormick.