Skip to main content

Advertisement

Log in

Analysis of the impact of digital tomosynthesis on the radiological investigation of patients with suspected pulmonary lesions on chest radiography

  • Chest
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To assess the impact of digital tomosynthesis (DTS) on the radiological investigation of patients with suspected pulmonary lesions on chest radiography (CXR).

Methods

Three hundred thirty-nine patients (200 male; age, 71.19 ± 11.9 years) with suspected pulmonary lesion(s) on CXR underwent DTS. Two readers prospectively analysed CXR and DTS images, and recorded their diagnostic confidence: 1 or 2 = definite or probable benign lesion or pseudolesion deserving no further diagnostic workup; 3 = indeterminate; 4 or 5 = probable or definite pulmonary lesion deserving further diagnostic workup by computed tomography (CT). Imaging follow-up by CT (n = 76 patients), CXR (n = 256) or histology (n = 7) was the reference standard.

Results

DTS resolved doubtful CXR findings in 256/339 (76 %) patients, while 83/339 (24 %) patients proceeded to CT. The mean interpretation time for DTS (mean ± SD, 220 ± 40 s) was higher (P < 0.05; Wilcoxon test) than for CXR (110 ± 30 s), but lower than CT (600 ± 150 s). Mean effective dose was 0.06 mSv (range 0.03–0.1 mSv) for CXR, 0.107 mSv (range 0.094–0.12 mSv) for DTS, and 3 mSv (range 2–4 mSv) for CT.

Conclusions

DTS avoided the need for CT in about three-quarters of patients with a slight increase in the interpretation time and effective dose compared to CXR.

Key Points

Digital tomosynthesis (DTS) improves the diagnostic confidence of chest radiography (CXR)

DTS reduces the need for CT for a suspected pulmonary lesion

DTS only imparts a radiation dose of around two CXRs

DTS takes longer to interpret than conventional chest radiography

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CXR:

Chest radiography

DTS:

Digital tomosynthesis

CT:

Computed tomography

References

  1. Wu N, Gamsu G, Czum J et al (2006) Detection of small pulmonary nodules using direct digital radiography and picture archiving and communication systems. J Thorac Imaging 21:27–31

    Article  PubMed  CAS  Google Scholar 

  2. Bley TA, Baumann T, Saueressig U et al (2008) Comparison of radiologist and CAD performance in the detection of CT-confirmed subtle pulmonary nodules on digital chest radiographs. Investig Radiol 43:343–348

    Article  Google Scholar 

  3. Remy-Jardin M, Remy J, Giraud F, Marquette CH (1993) Pulmonary nodules: detection with thick-section spiral CT versus conventional CT. Radiology 187:513–520

    PubMed  CAS  Google Scholar 

  4. Rubin GD, Lyo JK, Paik DS et al (2005) Pulmonary nodules on multi-detector row CT scans: performance comparison of radiologists and computer-aided detection. Radiology 234:274–283

    Article  PubMed  Google Scholar 

  5. Dobbins JT III, Godfrey DJ (2003) Digital x-ray tomosynthesis: current state of the art and clinical potential. Phys Med Biol 48:R65–R106

    Article  PubMed  Google Scholar 

  6. Dobbins JT, Mc Adams HP, Devon G, Li CM (2008) Digital tomosynthesis of the chest. J Thorac Imaging 23:86–92

    Article  PubMed  Google Scholar 

  7. Dobbins JT, Mc Adams HP, Song JW et al (2008) Digital tomosynthesis of the chest for lung nodule detection: interim sensitivity results from an ongoing NIH-sponsored trial. Med Phys 35:2554–2557

    Article  Google Scholar 

  8. Vikgren J, Zachrisson S, Svalkvist A et al (2008) Comparison of chest tomosynthesis and chest radiography for detection of pulmonary nodules: human observer study of clinical cases. Radiology 249:1034–1041

    Article  PubMed  Google Scholar 

  9. Gomi T, Nakajima M, Fujiwara H, Umeda T (2011) Comparison of chest dual-energy subtraction digital tomosynthesis imaging and dual-energy subtraction radiography to detect simulated pulmonary nodules with and without calcifications a phantom study. Acad Radiol 18:191–196

    Article  PubMed  Google Scholar 

  10. Yamada Y, Jinzaki M, Hasegawa I et al (2011) Fast scanning tomosynthesis for the detection of pulmonary nodules: diagnostic performance compared with chest radiography using multidetector-row computed tomography as the reference. Investig Radiol 46:471–477

    Article  Google Scholar 

  11. Quaia E, Baratella E, Cioffi V, Bregant P, Cernic S, Cuttin R, Cova MA (2010) The value of digital tomosynthesis in the diagnosis of suspected pulmonary lesions on chest radiography: analysis of diagnostic accuracy and confidence. Acad Radiol 17:1267–1274

    Article  PubMed  Google Scholar 

  12. Kim EY, Chung MJ, Lee HY, Koh WJ, Jung HN, Lee KS (2010) Pulmonary mycobacterial disease: diagnostic performance of low-dose digital tomosynthesis as compared with chest radiography. Radiology 257:269–277

    Article  PubMed  Google Scholar 

  13. Hansell DM, Bankier A, Mac Mahon H, McLoud T, Muller NL, Remy J (2008) Fleischner society: glossary of terms for thoracic imaging. Radiology 246:697–722

    Article  PubMed  Google Scholar 

  14. Servomaa A, Tapiovaara M (1998) Organ dose calculation in medical X ray examinations by the program PCXMC. Radiat Prot Dosim 80:213–219

    Article  Google Scholar 

  15. Cristy M, Eckerman KR (1987) Specific absorbed fractions of energy at various ages from internal photon sources. I. Method. Publication no. ORNL/TM-8381, Oak Ridge National Laboratory, Oak Ridge (USA)

  16. Sabol JM (2009) A Monte Carlo estimation of effective dose in chest tomosynthesis. Med Phys 36:5480–5487

    Article  PubMed  Google Scholar 

  17. European Guidelines on Quality Criteria for Computed Tomography (1999) Report EUR 16262. European Commission, Brussels. Available at: http://www.drs.dk/guidelines/ct/quality/index.htm

  18. Campbell MJ, Machin D (1999) Medical statistics, a commonsense approach. Wiley, Chichester, pp 85–89

    Google Scholar 

  19. Beck JR, Shultz EK (1986) The use of relative operating characteristic (ROC) curves in test performance evaluation. Arch Pathol Lab Med 110:13–20

    PubMed  CAS  Google Scholar 

  20. Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843

    PubMed  CAS  Google Scholar 

  21. Kundel HL, Polansky M (2003) Measurement of observer agreement. Radiology 228:303–308

    Article  PubMed  Google Scholar 

  22. Erasmus JJ, Connolly JE, McAdams HP, Roggli VL (2000) Solitary pulmonary nodules. I. Morphologic evaluation for differentiation of benign and malignant lesions. RadioGraphics 20:43–58

    PubMed  CAS  Google Scholar 

  23. Zhu X, Yu J, Huang Z (2004) Low-dose chest CT: optimizing radiation protection for patients. AJR Am J Roentgenol 183:809–816

    PubMed  Google Scholar 

  24. Gierada DS, Pilgram TK, Ford M et al (2008) Lung cancer: interobserver agreement on interpretation of pulmonary findings at low-dose CT screening. Radiology 246:265–272

    Article  PubMed  Google Scholar 

  25. Li B, Avinash GB (2007) Optimization of slice sensitivity profile for radiographic tomosynthesis. Med Phys 34:2907–2916

    Article  PubMed  Google Scholar 

  26. Godfrey DJ, McAdams HP, Dobbins JT (2006) Optimization of the matrix inversion tomosynthesis (MITS) impulse response and modulation transfer function characteristics for chest imaging. Med Phys 33:655–667

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr John Sabol, GE Healthcare, for invaluable help in the VolumeRad dose calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Quaia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quaia, E., Baratella, E., Cernic, S. et al. Analysis of the impact of digital tomosynthesis on the radiological investigation of patients with suspected pulmonary lesions on chest radiography. Eur Radiol 22, 1912–1922 (2012). https://doi.org/10.1007/s00330-012-2440-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2440-3

Keywords

Navigation