Skip to main content

Advertisement

Log in

High-efficiency electroporation by freezing intact yeast cells with addition of calcium

  • Technical Note
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

We developed a novel freezing method to generate competent cells of Schizosaccharomyces pombe and Saccharomyces cerevisiae prior to electroporation. Freezing the intact cells in sorbitol with the addition of calcium at −80 °C allowed us to improve the transformation efficiency after freezing and thawing. The optimum concentration of CaCl2 was found to be 5–10 mM. The addition of other cations had no effect on the efficiency, while the addition of calcium meant that a broad concentration of sorbitol (0.6–2.5 M) could be used, independent of strain. Moreover, increasing the cell concentration to 2×109 cells/ml during an applied electric pulse further increased the efficiency after freezing and resulted in a wide range of electric field strength (9.0–11.5 kV/cm). Therefore, there was no need to optimize both the concentration of cryoprotectant and the electric field strength of the applied pulse. This procedure for electroporation allows the frozen competent cells to be stored long-term without any significant loss of efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  • Akada R, Kawahata M, Nishizawa Y (2000) Elevated temperature greatly improves transformation of fresh and frozen competent cells in yeast. Biotechniques 28:854–856

    CAS  PubMed  Google Scholar 

  • Alfa C, Fantes P, Hyams J, McLeod M, Warbrick E (1993) Experiments with fission yeast. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

  • Bakás LS, Disalvo EA (1991) Ca2+ action on the stability of egg phosphatidylcholine sonicated vesicles during freeze–thaw cycles. Cryobiology 28:279–287

    PubMed  Google Scholar 

  • Beach D, Piper M, Nurse P (1982) Construction of a Schizosaccharomyces pombe gene bank in a yeast bacterial shuttle vector and its use to isolate genes by complementation. Mol Gen Genet 187:326–329

    CAS  PubMed  Google Scholar 

  • Becker DM, Guarente L (1991) High-efficiency transformation of yeast by electroporation. Methods Enzymol 194:182–187

    CAS  PubMed  Google Scholar 

  • Broach JR, Strathern JN, Hicks JB (1979) Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. Gene 8:121–133

    CAS  PubMed  Google Scholar 

  • Bröker M (1993) Rapid transformation of cryopreserved competent Schizosaccharomyces pombe cells. Biotechniques 15:598–600

    PubMed  Google Scholar 

  • Costaglioli P, Meilhoc E, Masson JM (1994) High-efficiency electrotransformation of the yeast Schwanniomyces occidentalis. Curr Genet 27:26–30

    CAS  PubMed  Google Scholar 

  • Dohmen RJ, Strasser AWM, Höner CB, Hollenberg CP (1991) An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast 7:691–692

    CAS  PubMed  Google Scholar 

  • Faber KN, Haima P, Harder W, Veenhuis M, Ab G (1994) Highly-efficient electrotransformation of the yeast Hansenula polymorpha. Curr Genet 25:305–310

    CAS  PubMed  Google Scholar 

  • Fujikawa S (1995) A freeze-fracture study designed to clarify the mechanisms of freezing injury due to the freezing-induced close apposition of membranes in cortical parenchyma cells of mulberry. Cryobiology 32:444–454

    Article  Google Scholar 

  • Fujikawa S, Miura K (1986) Plasma membrane ultrastructural changes caused by mechanical stress in the formation of extracellular ice as a primary cause of slow freezing injury in fruit-bodies of basidiomycetes [Lyophyllum ulmarium (Fr.) Kühner]. Cryobiology 23:371–382

    Google Scholar 

  • Gietz D, Jean AS, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425

    CAS  PubMed  Google Scholar 

  • Hashimoto H, Morikawa H, Yamada Y, Kimura A (1985) A novel method for transformation of intact yeast cells by electroinjection of plasmid DNA. Appl Microbiol Biotechnol 21:336–339

    CAS  Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci USA 75:1929–1933

    CAS  PubMed  Google Scholar 

  • Hubberstey AV, Wildeman AG (1991) Transformation of Saccharomyces cerevisiae by use of frozen spheroplasts. Trends Genet 7:41

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  PubMed  Google Scholar 

  • Ito H, Murata K, Kimura A (1984) Transformation of intact yeast cells treated with alkali cations or thiol compounds. Agric Biol Chem 48:341–347

    CAS  Google Scholar 

  • Jimenez J (1991) Cryopreservation of competent Schizosaccharomyces pombe protoplasts. Trends Genet 7:40

    Article  CAS  PubMed  Google Scholar 

  • Ju Q, Warner JR (1991) Competent Saccharomyces cerevisiae cells can be frozen and used for transformation with high frequency. Trends Genet 7:242

    CAS  PubMed  Google Scholar 

  • Karube I, Tamiya E, Matsuoka H (1985) Transformation of Saccharomyces cerevisiae spheroplasts by high electric pulse. FEBS Lett 182:90–93

    Article  CAS  Google Scholar 

  • Kato T Jr, Okazaki K, Murakami H, Stettler S, Fantes PA, Okayama H (1996) Stress signal, mediated by a Hog1-like MAP kinase, controls sexual development in fission yeast. FEBS Lett 378:207–212

    Article  CAS  PubMed  Google Scholar 

  • Keller WA, Melchers G (1973) The effect of high pH and calcium on tobacco leaf protoplast fusion. Z Naturforsch 28:737–741

    CAS  Google Scholar 

  • Klebe RJ, Harriss JV, Sharp ZD, Douglas MG (1983) A general method for polyethylene-glycol-induced genetic transformation of bacteria and yeast. Gene 25:333–341

    CAS  PubMed  Google Scholar 

  • Meilhoc E, Masson JM, Teissié J (1990) High efficiency transformation of intact yeast cells by electric field pulses. Bio/Technology 8:223–227

    CAS  Google Scholar 

  • Nagata T, Melchers G (1978) Surface charge of protoplasts and their significance in cell–cell interaction. Planta 142:235–238

    CAS  Google Scholar 

  • Okazaki K, Okazaki N, Kume K, Jinno S, Tanaka K, Okayama H (1990) High-frequency transformation method and library transducing vectors for cloning mammalian cDNAs by trans-complementation of Schizosaccharomyces pombe. Nucleic Acids Res 18:6485–6489

    CAS  PubMed  Google Scholar 

  • Prentice HL (1992) High efficiency transformation of Schizosaccharomyces pombe by electroporation. Nucleic Acids Res 20:621

    CAS  PubMed  Google Scholar 

  • Sabelnikov AG, Cymbalyuk ES, Gongadze G, Borovyagin VL (1991) Escherichia coli membranes during electrotransformation: an electron microscopy study. Biochim Biophys Acta 1066:21–28

    CAS  PubMed  Google Scholar 

  • Stinchcomb DT, Mamm C, Davis RW (1982) Centromeric DNA from Saccharomyces cerevisiae. J Mol Biol 158:157–190

    CAS  PubMed  Google Scholar 

  • Stowers L, Gautsch J, Dana R, Hoekstra MF (1995) Yeast transformation and the preparation of frozen spheroplasts for electroporation. Methods Mol Biol 47:261–267

    CAS  PubMed  Google Scholar 

  • Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci USA 76:1035–1039

    CAS  PubMed  Google Scholar 

  • Suga M, Hatakeyama T (2001) High efficiency transformation of Schizosaccharomyces pombe pretreated with thiol compounds by electroporation. Yeast 18:1015–1021

    Article  CAS  PubMed  Google Scholar 

  • Suga M, Isobe M, Hatakeyama T (2000) Cryopreservation of competent intact yeast cells for efficient electroporation. Yeast 16:889–896

    Article  CAS  PubMed  Google Scholar 

  • Tan SL, Dossett M, Katze MG (1998) Cryopreserved yeast cells suitable for routine, small-scale transformations. Biotechniques 25:792-796

    CAS  PubMed  Google Scholar 

  • Zhao Y, Hopkins KM, Lieberman HB (1993) A method for the preparation and storage of frozen, competent Schizosaccharomyces pombe spheroplasts. Biotechniques 15:238

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Koei Okazaki, Dr. Hiroto Okayama, and Dr. Kei-ichi Nakagawa for providing yeast strains and plasmids, and Atsushi Inoue for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Suga.

Additional information

Communicated by S. Hohmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suga, M., Hatakeyama, T. High-efficiency electroporation by freezing intact yeast cells with addition of calcium. Curr Genet 43, 206–211 (2003). https://doi.org/10.1007/s00294-003-0385-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0385-4

Keywords

Navigation