Skip to main content
Log in

Gelatin films dendronized selectively on one side: enhancing antimicrobial properties and water repellence

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

To develop a material with potential biomedical applications, novel gelatin films were prepared by cold-casting method using cerium(III) and genipin solution as cross-linking agents, and surface modified with dendritic molecules. The structure and properties of the synthesized gelatin films were investigated by ATR-FTIR, mechanical tests, swelling behavior and water vapor permeability (WVP). The results showed that cross-linking could improve the mechanical and microbiological properties and lower the hydrophilic property of gelatin films. According to ATR-FTIR analysis, it can be concluded that the dendronization took place on only one of the faces of the films. The results have shown that the experimental methodology performed allows one-surface modification, so a novel biomaterial was obtained in the form of a film with good properties and dendritic structure in one face (hydrophobic and hydrophilic faces), rendering a multivalent structure useful in biomedicine development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847. doi:10.1016/j.ijbiomac.2014.09.044

    Article  CAS  PubMed  Google Scholar 

  2. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092. doi:10.1021/sc500087z

    Article  CAS  Google Scholar 

  3. Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117. doi:10.1016/j.carbpol.2014.03.039

    Article  CAS  PubMed  Google Scholar 

  4. Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25(8):1813–1827. doi:10.1016/j.foodhyd.2011.02.007

    Article  CAS  Google Scholar 

  5. Uriarte-Montoya MH, Santacruz-Ortega H, Cinco-Moroyoqui FJ, Rouzaud-Sández O, Plascencia-Jatomea M, Ezquerra-Brauer JM (2011) Giant squid skin gelatin: chemical composition and biophysical characterization. Food Res Int 44(10):3243–3249. doi:10.1016/j.foodres.2011.08.018

    Article  CAS  Google Scholar 

  6. Ashokkumar M, Narayanan NT, Mohana Reddy AL, Gupta BK, Chandrasekaran B, Talapatra S, Ajayan PM, Thanikaivelan P (2012) Transforming collagen wastes into doped nanocarbons for sustainable energy applications. Green Chem 14(6):1689–1695. doi:10.1039/c2gc35262a

    Article  CAS  Google Scholar 

  7. Thakur VK, Thakur MK, Gupta RK (2013) Graft copolymers from cellulose: synthesis, characterization and evaluation. Carbohydr Polym 97(1):18–25. doi:10.1016/j.carbpol.2013.04.069

    Article  CAS  PubMed  Google Scholar 

  8. Rawdkuen S, Sai-Ut S, Benjakul S (2010) Properties of gelatin films from giant catfish skin and bovine bone: a comparative study. Eur Food Res Technol 231(6):907–916. doi:10.1007/s00217-010-1340-5

    Article  CAS  Google Scholar 

  9. Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75(1):R43–R49. doi:10.1111/j.1750-3841.2009.01456.x

    Article  CAS  PubMed  Google Scholar 

  10. Boateng JS, Matthews KH, Stevens HNE, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923. doi:10.1002/jps.21210

    Article  CAS  PubMed  Google Scholar 

  11. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18(2):84–95. doi:10.1016/j.tifs.2006.09.004

    Article  CAS  Google Scholar 

  12. Thakur VK, Thakur MK, Gupta RK (2013) Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr Polym 98(1):820–828. doi:10.1016/j.carbpol.2013.06.072

    Article  CAS  PubMed  Google Scholar 

  13. Thakur VK, Thakur MK, Gupta RK (2013) Synthesis of lignocellulosic polymer with improved chemical resistance through free radical polymerization. Int J Biol Macromol 61:121–126. doi:10.1016/j.ijbiomac.2013.06.045

    Article  CAS  PubMed  Google Scholar 

  14. Thakur VK, Thakur MK, Gupta RK (2013) Development of functionalized cellulosic biopolymers by graft copolymerization. Int J Biol Macromol 62:44–51. doi:10.1016/j.ijbiomac.2013.08.026

    Article  CAS  PubMed  Google Scholar 

  15. Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652. doi:10.1021/sc500634p

    Article  CAS  Google Scholar 

  16. Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15. doi:10.1016/j.jclepro.2014.06.066

    Article  CAS  Google Scholar 

  17. Wu J, Ge S, Liu H, Wang S, Chen S, Wang J, Li J, Zhang Q (2014) Properties and antimicrobial activity of silver carp (Hypophthalmichthys molitrix) skin gelatin-chitosan films incorporated with oregano essential oil for fish preservation. Food Packag Shelf Life 2(1):7–16. doi:10.1016/j.fpsl.2014.04.004

    Article  Google Scholar 

  18. Huang C, Huang Y, Tian N, Tong Y, Yin R (2010) Preparation and characterization of gelatin/cerium(III) film. J Rare Earths 28(5):756–759. doi:10.1016/S1002-0721(09)60195-2

    Article  CAS  Google Scholar 

  19. Fakirov S, Sarac Z, Anbar T, Boz B, Bahar I, Evstatiev M, Apostolov AA, Mark JE, Kloczkowski A (1996) Mechanical properties and transition temperatures of cross-linked oriented gelatin. Colloid Polym Sci 274(4):334–341. doi:10.1007/bf00654053

    Article  CAS  Google Scholar 

  20. Fakirov S, Sarac Z, Anbar T, Boz B, Bahar I, Evstatiev M, Apostolov AA, Mark JE, Kloczkowski A (1997) Mechanical properties and transition temperatures of crosslinked-oriented gelatin. Colloid Polym Sci 275(4):307–314. doi:10.1007/s003960050087

    Article  CAS  Google Scholar 

  21. Bigi A, Bracci B, Cojazzi G, Panzavolta S, Roveri N (1998) Drawn gelatin films with improved mechanical properties. Biomaterials 19(24):2335–2340. doi:10.1016/S0142-9612(98)00149-5

    Article  CAS  PubMed  Google Scholar 

  22. Bigi A, Cojazzi G, Panzavolta S, Roveri N, Rubini K (2002) Stabilization of gelatin films by crosslinking with genipin. Biomaterials 23(24):4827–4832. doi:10.1016/S0142-9612(02)00235-1

    Article  CAS  PubMed  Google Scholar 

  23. Akao T, Kobashi K, Aburada M (1994) Enzymic studies on the animal and intestinal bacterial metabolism of geniposide. Biol Pharm Bull 17(12):1573–1576. doi:10.1248/bpb.17.1573

    Article  CAS  PubMed  Google Scholar 

  24. Sung H-W, Huang R-N, Huang LLH, Tsai C-C, Chiu C-T (1998) Feasibility study of a natural crosslinking reagent for biological tissue fixation. J Biomed Mater Res 42(4):560–567. doi:10.1002/(sici)1097-4636(19981215)42:4<560:aid-jbm12>3.0.co;2-i

    Article  CAS  PubMed  Google Scholar 

  25. Huang LLH, Sung H-W, Tsai C-C, Huang D-M (1998) Biocompatibility study of a biological tissue fixed with a naturally occurring crosslinking reagent. J Biomed Mater Res 42(4):568–576. doi:10.1002/(sici)1097-4636(19981215)42:4<568:aid-jbm13>3.0.co;2-7

    Article  CAS  PubMed  Google Scholar 

  26. Sung H-W, Huang R-N, Huang LLH, Tsai C-C (1999) In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. J Biomater Sci Polym Ed 10(1):63–78. doi:10.1163/156856299x00289

    Article  CAS  PubMed  Google Scholar 

  27. Tsai C-C, Huang R-N, Sung H-W, Liang HC (2000) In vitro evaluation of the genotoxicity of a naturally occurring crosslinking agent (genipin) for biologic tissue fixation. J Biomed Mater Res 52(1):58–65. doi:10.1002/1097-4636(200010)52:1<58:aid-jbm8>3.0.co;2-0

    Article  CAS  PubMed  Google Scholar 

  28. Huang Y, Wei T, Ge Y (2008) Preparation and characterization of novel Ce(III)-gelatin complex. J Appl Polym Sci 108(6):3804–3807. doi:10.1002/app.27976

    Article  CAS  Google Scholar 

  29. Ozawa C, Hojo H, Nakahara Y, Katayama H, Nabeshima K, Akahane T, Nakahara Y (2007) Synthesis of glycopeptide dendrimer by a convergent method. Tetrahedron 63(39):9685–9690. doi:10.1016/j.tet.2007.07.023

    Article  CAS  Google Scholar 

  30. Aldana AA, Strumia MC, Martinelli M (2013) Nanomodification of chitosan microspheres with dendron molecules. J Biomater Tissue Eng 3(1):157–163. doi:10.1166/jbt.2013.1075

    Article  CAS  Google Scholar 

  31. Aldana AA, Toselli R, Strumia MC, Martinelli M (2012) Chitosan films modified selectively on one side with dendritic molecules. J Mater Chem 22(42):22670–22677. doi:10.1039/c2jm33100d

    Article  CAS  Google Scholar 

  32. Martinelli M, Calderón M, Alvarez ICI, Strumia MC (2007) Functionalised supports with sugar dendritic ligand. React Funct Polym 67(10):1018–1026. doi:10.1016/j.reactfunctpolym.2007.06.005

    Article  CAS  Google Scholar 

  33. Martinelli M, Calderón M, Rodríguez E, Freire JJ, Strumia MC (2007) Polyfunctional MDI oligomers through dendrimerization. Eur Polymer J 43(5):1978–1985. doi:10.1016/j.eurpolymj.2007.02.005

    Article  CAS  Google Scholar 

  34. Paez JI, Martinelli M, Brunetti V, Strumia MC (2012) Dendronization: a useful synthetic strategy to prepare multifunctional materials. Polymers 4(1):355–395

    Article  CAS  Google Scholar 

  35. Stancu I-C (2010) Gelatin hydrogels with PAMAM nanostructured surface and high density surface-localized amino groups. React Funct Polym 70(5):314–324. doi:10.1016/j.reactfunctpolym.2010.02.005

    Article  CAS  Google Scholar 

  36. Wiley Series in Drug Discovery and Development (2012). In: Dendrimer-based drug delivery systems. Wiley Inc., pp 515–516. doi:10.1002/9781118275238.scard

  37. Schrieber R, Gareis H (2007) Gelatine handbook: theory and industrial practice. Wiley, Weinheim

    Book  Google Scholar 

  38. Fakirov S, Bhattacharyya D (2007) Handbook of engineering biopolymers: homopolymers. Hanser, Blends and Composites

    Book  Google Scholar 

  39. Peña C, de la Caba K, Eceiza A, Ruseckaite R, Mondragon I (2010) Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresour Technol 101(17):6836–6842. doi:10.1016/j.biortech.2010.03.112

    Article  PubMed  CAS  Google Scholar 

  40. Coimbra P, Gil MH, Figueiredo M (2014) Tailoring the properties of gelatin films for drug delivery applications: influence of the chemical cross-linking method. Int J Biol Macromol 70:10–19. doi:10.1016/j.ijbiomac.2014.06.021

    Article  CAS  PubMed  Google Scholar 

  41. Kavya KC, Jayakumar R, Nair S, Chennazhi KP (2013) Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Int J Biol Macromol 59:255–263. doi:10.1016/j.ijbiomac.2013.04.023

    Article  CAS  PubMed  Google Scholar 

  42. Nur Hanani ZA, Roos YH, Kerry JP (2014) Use and application of gelatin as potential biodegradable packaging materials for food products. Int J Biol Macromol 71:94–102. doi:10.1016/j.ijbiomac.2014.04.027

    Article  CAS  PubMed  Google Scholar 

  43. Sarvaiya J, Agrawal YK (2014) Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery. Int J Biol Macromol 72C:454–465. doi:10.1016/j.ijbiomac.2014.08.052

    Google Scholar 

  44. Shalumon KT, Deepthi S, Anupama MS, Nair SV, Jayakumar R, Chennazhi KP (2014) Fabrication of poly (l-lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering. Int J Biol Macromol 72C:1048–1055. doi:10.1016/j.ijbiomac.2014.09.058

    Google Scholar 

  45. Sinthusamran S, Benjakul S, Kishimura H (2014) Molecular characteristics and properties of gelatin from skin of seabass with different sizes. Int J Biol Macromol 73C:146–153. doi:10.1016/j.ijbiomac.2014.11.024

    Google Scholar 

  46. Staroszczyk H, Pielichowska J, Sztuka K, Stangret J, Kołodziejska I (2012) Molecular and structural characteristics of cod gelatin films modified with EDC and TGase. Food Chem 130(2):335–343. doi:10.1016/j.foodchem.2011.07.047

    Article  CAS  Google Scholar 

  47. Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39(8):549–559. doi:10.1111/j.1745-7270.2007.00320.x

    Article  CAS  PubMed  Google Scholar 

  48. Li B, Kennedy JF, Jiang QG, Xie BJ (2006) Quick dissolvable, edible and heatsealable blend films based on konjac glucomannan–Gelatin. Food Res Int 39(5):544–549. doi:10.1016/j.foodres.2005.10.015

    Article  CAS  Google Scholar 

  49. Muyonga JH, Cole CGB, Duodu KG (2004) Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chem 86(3):325–332. doi:10.1016/j.foodchem.2003.09.038

    Article  CAS  Google Scholar 

  50. Ma W, Tang C-H, Yin S-W, Yang X-Q, Qi J-R (2013) Genipin-crosslinked gelatin films as controlled releasing carriers of lysozyme. Food Res Int 51(1):321–324. doi:10.1016/j.foodres.2012.12.039

    Article  CAS  Google Scholar 

  51. Davies JB, Bosi SG, Baldock C (2012) A genipin-gelatin gel dosimeter for radiation processing. Radiat Phys Chem 81(8):1263–1265. doi:10.1016/j.radphyschem.2011.10.007

    Article  CAS  Google Scholar 

  52. Su Y, Mo X (2011) Genipin crosslinked gelatin nanofibers for tissue engineering. J Control Release 152(1):230–232. doi:10.1016/j.jconrel.2011.09.029

    Article  CAS  Google Scholar 

  53. Cui L, Jia J, Guo Y, Liu Y, Zhu P (2014) Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin. Carbohydr Polym 99:31–38. doi:10.1016/j.carbpol.2013.08.048

    Article  CAS  PubMed  Google Scholar 

  54. Mi F-L, Sung H-W, Shyu S-S (2000) Synthesis and characterization of a novel chitosan-based network prepared using naturally occurring crosslinker. J Polym Sci Part A Polym Chem 38(15):2804–2814. doi:10.1002/1099-0518(20000801)38:15<2804:aid-pola210>3.0.co;2-y

    Article  CAS  Google Scholar 

  55. Mi F-L, Shyu S-S, Peng C-K (2005) Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin. J Polym Sci Part A Polym Chem 43(10):1985–2000. doi:10.1002/pola.20669

    Article  CAS  Google Scholar 

  56. Butler MF, Ng Y-F, Pudney PDA (2003) Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. J Polym Sci Part A Polym Chem 41(24):3941–3953. doi:10.1002/pola.10960

    Article  CAS  Google Scholar 

  57. Mi F-L, Tan Y-C, Liang H-F, Sung H-W (2002) In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials 23(1):181–191. doi:10.1016/S0142-9612(01)00094-1

    Article  CAS  PubMed  Google Scholar 

  58. Aldana AA, González A, Strumia MC, Martinelli M (2012) Preparation and characterization of chitosan/genipin/poly(N-vinyl-2-pyrrolidone) films for controlled release drugs. Mater Chem Phys 134(1):317–324. doi:10.1016/j.matchemphys.2012.02.071

    Article  CAS  Google Scholar 

  59. Yang C, Xu L, Zhou Y, Zhang X, Huang X, Wang M, Han Y, Zhai M, Wei S, Li J (2010) A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohydr Polym 82(4):1297–1305. doi:10.1016/j.carbpol.2010.07.013

    Article  CAS  Google Scholar 

  60. Bertuzzi MA, Castro Vidaurre EF, Armada M, Gottifredi JC (2007) Water vapor permeability of edible starch based films. J Food Eng 80(3):972–978. doi:10.1016/j.jfoodeng.2006.07.016

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial assistance of FONCYT, CONICET, and SECYT of UNC. Schejtman Sergio D. thanks CONICET for the fellowship awarded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Martinelli.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García Schejtman, S.D., Toselli, R., Strumia, M.C. et al. Gelatin films dendronized selectively on one side: enhancing antimicrobial properties and water repellence. Polym. Bull. 72, 3043–3062 (2015). https://doi.org/10.1007/s00289-015-1452-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1452-y

Keywords

Navigation