Skip to main content
Log in

Thermal degradation behavior of polypropylene in the melt state: molecular weight distribution changes and chain scission mechanism

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In order to clarify the effect of thermal degradation on the structure of polypropylene materials, we investigated the changes in molecular weight distribution. The samples of polypropylene were degraded iso-thermally at 190 °C at different time intervals. The molecular weight distribution was significantly changed with thermo-degradation time, and the carbonyl index increased drastically for 40 min degraded samples, where the molecular weight distribution started splitting into two peaks. The results imply that heterogeneous degradation proceeded in this system. Sequentially, the weight distribution of the oligomeric products observed was discussed on the basis of chain scissions; these results indicate that there are some kinetically favored scissions occurring near the oxygen-centered radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Crawford RJ (ed) (1996) Rotational moulding of plastics, 2nd edn. Research Studies Press Ltd, England, pp 1–12

    Google Scholar 

  2. Billingham NC, Calvert PD (1990) In: Scott G (ed) Development in polymer stabilizations. Applied Science Publishers Ltd, London

  3. Gillen KT, Wise J, Clough RL (1995) General solution for the basic autoxidation scheme. Polym Degrad Stab 47(1):149–161

    Article  CAS  Google Scholar 

  4. Commereuc S, Vaillant D, Philippart JL, Lacoste J, Lemaire J, Carlsson DJ (1997) Photo and thermal decomposition of iPP hydroperoxides. Polym Degrad Stab 57(2):175–182

    Article  CAS  Google Scholar 

  5. Shyichuk AV, Stavychna DY, White JR (2001) Effect of tensile stress on chain scission and crosslinking during photo-oxidation of polypropylene. Polym Degrad Stab 72(2):279–285

    Article  CAS  Google Scholar 

  6. Fayolle B, Audouin L, George GA, Verdu J (2002) Macroscopic heterogeneity in stabilized polypropylene thermal oxidation. Polym Degrad Stab 77(3):515–522

    Article  CAS  Google Scholar 

  7. Elvira M, Tiemblo P, Gomez-Elvira JM (2004) Changes in the crystalline phase during the thermo-oxidation of a metallocene isotactic polypropylene. A DSC study. Polym Degrad Stab 83(3):509–518

    Article  CAS  Google Scholar 

  8. Suzuki S, Nakamura Y, Hasan ATM K, Liu B, Terano M, Nakatani H (2005) Dependence of tacticity distribution in thermal oxidative degradation of polypropylene. Polym Bull 54:311–319

    Article  CAS  Google Scholar 

  9. Achimsky L, Audouin L, Verdu J, Rychly J, MatisovaRychla L (1997) On a transition at 80 °C in polypropylene oxidation kinetics. Polym Degrad Stab 58(3):283–289

    Article  CAS  Google Scholar 

  10. Bertin D, Leblanc M, Marque SRA, Siri D (2010) Polypropylene degradation: theoretical and experimental investigation. Polym Degrad Stab 95(5):782–791

    Article  CAS  Google Scholar 

  11. Cramez MC, Oliveira MJ, Crawford RJ (2002) Optimisation of rotational moulding of polyethylene by predicting antioxidant consumption. Polym Degrad Stab 75(2):321–327

    Article  CAS  Google Scholar 

  12. Ciolacu CF, Choudhury NR, Dutta DK (2006) Colour formation in poly(ethylene terephthalate) during melt processing. Polym Degrad Stab 91(4):875–885

    Article  Google Scholar 

  13. Oliveira MJ, Botelho G (2008) Degradation of polyamide 11 in rotational moulding. Polym Degrad Stab 93(1):139–146

    Article  CAS  Google Scholar 

  14. Xu X, Ding Y, Qian Z, Wang F, Wen B, Zhou H, Zhang S, Yang M (2009) Degradation of poly(ethylene terephthalate)/clay nanocomposites during melt extrusion: effect of clay catalysis and chain extension. Polym Degrad Stab 94(1):113–123

    Article  CAS  Google Scholar 

  15. Gonzalez-Gonzalez VA, Neira-Velazquez G, Angulo-Sanchez JL (1998) Polypropylene chain scissions and molecular weight changes in multiple extrusion. Polym Degrad Stab 60(1):33–42

    Article  CAS  Google Scholar 

  16. Oliveira MJ, Cramez MC, Garcia CB, Kearns MP, Maziers E (2008) Effect of the processing conditions on the microstructure and properties of rotational molded polyamide 11. J Appl Polym Sci 108(2):939–946

    Article  CAS  Google Scholar 

  17. Xiang Q, Xanthos M, Miltra S, Patel SH, Guo J (2002) Effect of melt reprocessing on volatile emissions and structural/rheological changes of unstabilized polypropylene. Polym Degrad Stab 77(1):93–102

    Article  CAS  Google Scholar 

  18. Dintcheva NT, La Mantia FP, Scaffaro R, Paci M, Acierno D, Camino G (2002) Reprocessing and restabilization of greenhouse films. Polym Degrad Stab 75(3):459–464

    Article  Google Scholar 

  19. Awaja F, Pavel D (2005) Recycling of PET. Eur Polym J 41(7):1453–1477

    Article  CAS  Google Scholar 

  20. Ying Q, Zhao Y, Liu Y (1991) A study of thermal oxidative and thermal mechanical degradation of polypropylene. Die Makromol Chem 192(5):1041–1058

    Article  CAS  Google Scholar 

  21. Miyagawa E, Tokumitsu K, Tanaka A, Nitta K (2007) Mechanical property and molecular weight distribution changes with photo- and chemical-degradation on LDPE films. Polym Degrad Stab 92(10):1948–1956

    Article  CAS  Google Scholar 

  22. Daivd C, Trojan M, Caro A (1992) Photodegradation of polyethylene: comparison of various photoinitiators in natural weathering conditions. Polym Degrad Stab 37(3):233–245

    Article  Google Scholar 

  23. Canevaro SebastiaoV (2000) Chain scission distribution function for polypropylene degradation during multiple extrusions. Polym Degrad Stab 70(1):71–76

    Article  Google Scholar 

  24. Machado AV, Maia JM, Canevarolo SV, Covas JA (2004) Evolution of peroxide-induced thermomechanical degradation of polypropylene along the extruder. J Appl Polym Sci 91(4):2711–2720

    Article  CAS  Google Scholar 

  25. Iedema PD, Willems C, Vliet G, Bunge W, Mutsers SMP, Hoefsloot HCJ (2001) Using molecular weight distributions to determine the kinetics of peroxide-induced degradation of polypropylene. Chem Eng Sci 56(12):3659–3669

    Article  CAS  Google Scholar 

  26. Shibayama M, Imamura KY, Katoh K, Nomura S (1991) Transparency of recycled polypropylene film. J Appl Polym Sci 42(5):1451–1458

    Article  CAS  Google Scholar 

  27. Hinsken H, Moss S, Pauquet JR, Zweifel H (1991) Degradation of polyolefins during melt processing. Polym Degrad Stab 34(1–3):279–293

    Article  CAS  Google Scholar 

  28. Lehrle R, Williams R, French C, Hammond T (1995) Themolysis and methanolysis of poly(β-hydroxybutyrate): random scission assessed by statistical analysis of molecular weight distributions. Macromolecular 28(13):4408–4414

    Article  CAS  Google Scholar 

  29. Pasquini N (2005) Polypropylene handbook, 2nd edn. Carl Hanser Verlag, Munich, pp 267–271

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koh-hei Nitta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, S., Igarashi, T. & Nitta, Kh. Thermal degradation behavior of polypropylene in the melt state: molecular weight distribution changes and chain scission mechanism. Polym. Bull. 67, 1661–1670 (2011). https://doi.org/10.1007/s00289-011-0560-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0560-6

Keywords

Navigation