Skip to main content
Log in

Topological classification and enumeration of RNA structures by genus

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

To an RNA pseudoknot structure is naturally associated a topological surface, which has its associated genus, and structures can thus be classified by the genus. Based on earlier work of Harer–Zagier, we compute the generating function \(\mathbf{D}_{g,\sigma }(z)=\sum _{n}\mathbf{d}_{g,\sigma }(n)z^n\) for the number \(\mathbf{d}_{g,\sigma }(n)\) of those structures of fixed genus \(g\) and minimum stack size \(\sigma \) with \(n\) nucleotides so that no two consecutive nucleotides are basepaired and show that \(\mathbf{D}_{g,\sigma }(z)\) is algebraic. In particular, we prove that \(\mathbf{d}_{g,2}(n)\sim k_g\,n^{3(g-\frac{1}{2})} \gamma _2^n\), where \(\gamma _2\approx 1.9685\). Thus, for stack size at least two, the genus only enters through the sub-exponential factor, and the slow growth rate compared to the number of RNA molecules implies the existence of neutral networks of distinct molecules with the same structure of any genus. Certain RNA structures called shapes are shown to be in natural one-to-one correspondence with the cells in the Penner–Strebel decomposition of Riemann’s moduli space of a surface of genus \(g\) with one boundary component, thus providing a link between RNA enumerative problems and the geometry of Riemann’s moduli space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. These combinatorial structures occur in a number of instances in pure mathematics including finite type invariants of knots and links (Bar-Natan 1995; Kontsevich 1993), the representation theory of Lie algebras (Campoamor-Stursberg and Manturov 2004), the geometry of moduli spaces of flat connections on surfaces (Andersen et al. 1996, 1998), mapping class groups (Andersen et al. 2010) and the Four-Color Theorem (Bar-Natan 1997), and in applied mathematics including codifying the pairings among nucleotides in RNA molecules (Reidys 2011; Bon et al. 2008; Orland and Zee 2002), or more generally the contacts of any binary macromolecule (Penner et al. 2010; Penner and Waterman 1993; Waterman 1995), and in the analysis of data structures (Flajolet 1980; Flajolet et al. 1980).

  2. The numbers \(\mathbf{c}_g(n)\) had been computed in another generating function over two decades ago by Harer and Zagier (1986) in the equivalent guise of the number of side pairings of a polygon with \(2n\) sides that produce a surface of genus \(g\), namely,

    $$\begin{aligned} 1+2\sum _{n\ge 0} \sum _{2g\le n}{{\mathbf{c}_g(n)}\over {(2n-1)!!}} x^{n+1-2g} z^{n+1}= \biggl ({{1+z}\over {1-z}}\biggr )^x, \end{aligned}$$

    a striking and beautiful formula.

  3. As a general notational point for any power series \(R(z)=\sum a_iz^i\), we shall write \([z^i]R(z)=a_i\) for the extraction of the coefficient \(a_i\) of \(z^i\).

References

  • Andersen JE, Bene AJ, Meilhan J-B, Penner RC (2010) Finite type invariants and fatgraphs. Adv Math 225:2117–2161

    Article  MathSciNet  MATH  Google Scholar 

  • Andersen JE, Mattes J, Reshetikhin N (1996) The poisson structure on the moduli space of flat connections and chord diagrams. Topology 35:1069–1083

    Article  MathSciNet  MATH  Google Scholar 

  • Andersen JE, Mattes J, Reshetikhin N (1998) Quantization of the algebra of chord diagrams. Math Proc Camb Phil Soc 124:451–467

    Article  MathSciNet  MATH  Google Scholar 

  • Bar-Natan D (1995) On the Vassiliev knot invariants. Topology 34:423–475

    Article  MathSciNet  MATH  Google Scholar 

  • Bar-Natan D (1997) Lie algebras and the four colour problem. Combinatorica 17:43–52

    Article  MathSciNet  MATH  Google Scholar 

  • Bender EA, Rodney Canfield E (1988) The asymptotic number of tree-rooted maps on a surface. J Comb Theory Ser A 48(2):156–164

    Article  MATH  Google Scholar 

  • Bon M, Vernizzi G, Orland H, Zee A (2008) Topological classification of RNA structures. J Mol Biol 379:900–911

    Article  Google Scholar 

  • Campoamor-Stursberg R, Manturov VO (2004) Invariant tensor formulas via chord diagrams. J Math Sci 108:3018–3029

    MathSciNet  Google Scholar 

  • dell’Erba MG, Zemba GR (2009) Thermodynamics of a model for RNA folding. Phys Rev E 79:011913

    Article  Google Scholar 

  • Euler L (1752) Elementa doctrinae solidorum. Novi Comm Acad Sci Imp Petropol 4:109–140

    Google Scholar 

  • Flajolet P (1980) Combinatorial aspects of continued fractions. Discret Math 32:125–161

    MathSciNet  MATH  Google Scholar 

  • Flajolet P, Francon J, Vuillemin J (1980) Sequence of operations analysis for dynamic data structures. J Algorithms 1:111–141

    Article  MathSciNet  MATH  Google Scholar 

  • Flajolet P, Sedgewick R (2009) Analytical combinatorics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gao JZM, Li LYM, Reidys CM (2010) Inverse folding of RNA pseudoknot structures. Algorithms Mol Biol 5:R27

    Article  Google Scholar 

  • Garg I, Deo N (2009) RNA matrix models with external interactions and their asymptotic behavior. Phys Rev E 79:061903

    Article  Google Scholar 

  • Goulden P, Nica A (2005) A direct bijection for the Harer–Zagier formula. J Comb Theory (A) 111:224–238

    Article  MathSciNet  MATH  Google Scholar 

  • Goupil A, Schaeffer G (1998) Factoring n-cycles and counting maps of given genus. Eur J Comb 19(7): 819–834

    Google Scholar 

  • Grüner WG, Strothmann D, Reidys CM, Weber J, Hofacker IL, Stadler PF, Schuster P (1996) Analysis of RNA sequence structure maps by exhaustive enumeration II. Neutral Netw Chem Mon 127:375–389

    Article  Google Scholar 

  • Grüner WG, Strothmann D, Reidys CM, Weber J, Hofacker IL, Stadler PF, Schuster P (1996) Analysis of RNA sequence structure maps by exhaustive enumeration I. Neutral Netw Chem Mon 127:355–374

    Article  Google Scholar 

  • Harer J, Zagier D (1986) The Euler characteristic of the moduli space of curves. Invent Math 85:457–485

    Article  MathSciNet  MATH  Google Scholar 

  • Haslinger C, Stadler PF (1999) RNA structures with pseudo-knots. Bull Math Biol 61:437–467

    Article  Google Scholar 

  • Jin EY, Reidys CM (2011) Random induced subgraphs of Cayley graphs induced by transpositions. Discret Math 21(311):2496–2511

    Article  MathSciNet  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Konings DAM, Gutell RR (1995) A comparison of thermodynamic foldings with comparatively derived structures of 16s and 16s-like r RNAs. RNA 1:559–574

    Google Scholar 

  • Kontsevich M (1993) Vassiliev’s knot invariants. Adv Sov Math 16:137–150

    MathSciNet  Google Scholar 

  • Lando SK, Zvonkin AK (2004) Graphs on surfaces and their applications: with an appendix by Don B. Zagier. Encyclopaedia of Mathematical Sciences, 141. Low-Dimensional Topology, II. Springer-Verlag, Berlin

  • Li TJX, Reidys CM (2012) The genus filtration of \(\gamma \)-structures. Math Biosci (submitted)

  • Loria A, Pan T (1996) Domain structure of the ribozyme from eubacterial ribonuclease. RNA 2:551–563

    Google Scholar 

  • Milgram RJ, Penner RC (1993) Riemann’s moduli space and the symmetric groups. In: Bödigheimer C-F, Hain RM (eds) Mapping class groups and moduli spaces of Riemann surfaces. AMS contemporary math, vol 150. pp 247–290

  • Orland H, Zee A (2002) RNA folding and large N matrix theory. Nucl Phys B 620:456–476

    Article  MathSciNet  MATH  Google Scholar 

  • Penner RC (1987) The Teichmuller space of a punctured surface. Commun Math Phys

  • Penner RC (1988) Perturbative series and the moduli space of Riemann surfaces. J Diff Geom 27:35–53

    MathSciNet  MATH  Google Scholar 

  • Penner RC (1992) Weil–Petersson volumes. J Diff Geom 35:559–608

    MathSciNet  MATH  Google Scholar 

  • Penner RC (2004) Cell decomposition and compactification of Riemann’s moduli space in decorated Teichmüller theory. In: Tongring N, Penner RC (eds) Woods hole mathematics-perspectives in math and physics. World Scientific, Singapore, pp 263–301 (arXiv)

  • Penner RC, Knudsen M, Wiuf C, Andersen J (2010) Fatgraph model of proteins. Comm Pure Appl Math 63:1249–1297

    Article  MathSciNet  MATH  Google Scholar 

  • Penner RC, Waterman MS (1993) Spaces of RNA secondary structures. Adv Math 101:31–49

    Article  MathSciNet  MATH  Google Scholar 

  • Pillsbury M, Orland H, Zee A (2005) Steepest descent calculation of RNA pseudoknots. Phys Rev E 72:011911

    Article  Google Scholar 

  • Pillsbury M, Taylor JA, Orland H, Zee A (2005) An algorithm for RNA pseudoknots. arXiv: cond-mat/0310505v2

  • Reidys CM, Huang FWD, Andersen JE, Penner RC, Stadler PF, Nebel ME (2011) Topology and prediction of RNA pseudoknots. Bioinformatics. doi:10.1093/bioinformatics/btr090

  • Reidys CM (2011) Combinatorial computational biology of RNA. Springer, New York

    Book  MATH  Google Scholar 

  • Reidys CM, Wang RR, Zhao AYY (2010) Modular, \(k\)-noncrossing diagrams. Electr J Comb 1(17):R76

    MathSciNet  Google Scholar 

  • Reidys CM, Stadler PF, Schuster PK (1997) Generic properties of combinatory maps and neutral networks of RNA secondary structrures. Bull Math Biol 59:339–397

    Article  MATH  Google Scholar 

  • Reidys CM, Stadler PF (2002) Combinatorial landscapes. SIAM Rev 44:3–54

    Article  MathSciNet  MATH  Google Scholar 

  • Rivas E, Eddy SR (1999) A dynamic programming algorithm for RNA structure prediction including pseudoknots. J Mol Biol 285:2053–2068

    Article  Google Scholar 

  • Reidys CM, Forst CV, Schuster P (2001) Replication and mutation on neutral networks. Bull Math Biol 63:57–94

    Article  Google Scholar 

  • Reidys CM (2009) Large Components of Random induced subgraphs of n-cubes. Discret Math 309:3113–3124

    Article  MathSciNet  MATH  Google Scholar 

  • Stanley RP (1997) Enumerative combinatorics. Cambridge studies in advanced mathematics, vol 49. Cambridge University Press, Cambridge

  • Strebel K (1984) Quadratic differentials. Springer, Berlin

    Book  MATH  Google Scholar 

  • Staple DW, Butcher SE (2005) Pseudoknots: RNA structures with diverse functions. PLoS Biol 3(6): 956–959

    Google Scholar 

  • Vernizzi G, Orland H, Zee A (2005) Enumeration of RNA structures by matrix models. Phys Rev Lett 94:168103

    Article  Google Scholar 

  • Vernizzi G, Ribecca P, Orland H, Zee A (2006) Topology of pseudoknotted homopolymers. Phys Rev E 73:031902

    Article  Google Scholar 

  • Waterman M (1979) Combinatorics of RNA hairpins and cloverleafs. Stud Appl Math 60:91–96

    MathSciNet  MATH  Google Scholar 

  • Waterman M (1978) Secondary structure of single-stranded nucleic acids. Adv Math (Suppl Stud) 1:167–212

    Google Scholar 

  • Howell J, Smith T, Waterman M (1980) Computation of generating functions for biological molecules. SIAM J Appl Math 39:119–133

    Article  MathSciNet  MATH  Google Scholar 

  • Waterman M, Schmitt W (1994) Linear trees and RNA secondary structure. Discret Appl Math 51:317–323

    Article  MathSciNet  MATH  Google Scholar 

  • Waterman MS (1995) An introduction computational biology. Chapman and Hall, New York

    Book  Google Scholar 

  • Westhof E, Jaeger L (1992) RNA pseudoknots. Curr Opin Chem Biol 2:327–333

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.M. Reidys.

Additional information

J.E. Andersen and R.C. Penner are supported by QGM (Centre for Quantum Geometry of Moduli Spaces, funded by the Danish National Research Foundation).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, J., Penner, R., Reidys, C. et al. Topological classification and enumeration of RNA structures by genus. J. Math. Biol. 67, 1261–1278 (2013). https://doi.org/10.1007/s00285-012-0594-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-012-0594-x

Keywords

Navigation