Skip to main content
Log in

A mathematical investigation of a Clock and Wavefront model for somitogenesis

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Somites are transient blocks of cells that form sequentially along the antero-posterior axis of vertebrate embryos. They give rise to the vertebrae, ribs and other associated features of the trunk. In this work we develop and analyse a mathematical formulation of a version of the Clock and Wavefront model for somite formation, where the clock controls when the boundaries of the somites form and the wavefront determines where they form. Our analysis indicates that this interaction between a segmentation clock and a wavefront can explain the periodic pattern of somites observed in normal embryos. We can also show that a simplification of the model provides a mechanism for predicting the anomalies resulting from perturbation of the wavefront.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, R.E., Schnell, S., Maini, P.K.: Formation of vertebral precursors: past models and future predictions. J. Theor. Med. 5 (1), 23–35 (2003)

    Google Scholar 

  2. Baker, R.E., Schnell, S., Maini, P.K.: A clock and wavefront mechanism for somite formation. Submitted to Dev. Biol, 2005

  3. Collier, J.R., McInerney, D., Schnell, S., Maini, P.K., Gavaghan, D.J., Houston, P., Stern, C.D.: A cell cycle model for somitogenesis: mathematical formulation and numerical solution. J. Theor. Biol. 207, 305–316 (2000)

    Article  Google Scholar 

  4. Cooke J., Zeeman, E.C.: A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol. 58, 455–476 (1976)

    Google Scholar 

  5. Dubrulle, J., McGrew, M.J., Pourquié O.: FGF signalling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106, 219–232 (2001)

    Article  Google Scholar 

  6. Dubrulle, J., Pourquié, O.: From head to tail: links between the segmentation clock and antero-posterior patterning of the embryo. Curr. Op. Gen. Dev. 5, 519–523 (2002)

    Article  Google Scholar 

  7. Dubrulle, J., Pourquié, O.: fgf8 mRNA decay establishes a gradient that couples axial elongation to pattering in the vertebrate embryo. Nature 427, 419–422 (2004)

    Article  Google Scholar 

  8. Gossler, A., Hrabě de Angelis, M.: Somitogenesis. Curr. Top. Dev. Biol. 38, 225–287 (1998)

    Article  Google Scholar 

  9. McInerney, D., Schnell, S., Baker, R.E., Maini, P.K.: A mathematical formulation for the cell cycle model in somitogenesis: parameter constraints and numerical solutions. IMA J. Math. Appl. Med. Biol. 21, 85–113 (2004)

    MATH  Google Scholar 

  10. Palmeirim, I., Henrique, D., Ish-Horowicz, D., Pourquié, O.: Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91, 639–648 (1997)

    Article  Google Scholar 

  11. Pourquié, O.: The segmentation clock: converting embryonic time into spatial pattern. Science 301, 328–330 (2003)

    Article  Google Scholar 

  12. Pourquié, O.: The chick embryo: a leading model for model in somitogenesis studies. Mech. Dev. 121, 1069–1079 (2004)

    Article  Google Scholar 

  13. Pourquié, O.: Pers. Comm., 2004

  14. Primmett, D.R.N., Norris, W.E., Carlson, G.J., Keynes, R.J., Stern, C.D.: Periodic anomalies induced by heat shock in the chick embryo are associated with the cell cycle. Development 105, 119–130 (1989)

    Google Scholar 

  15. Primmett, D.R.N., Stern, C.D., Keynes, R.J.: Heat shock causes repeated segmental anomalies in the chick embryo. Development 104, 331–339 (1988)

    Google Scholar 

  16. Saga, Y.: Genetic rescue of segmentation defect in MesP2-deficient mice by MesP1 gene replacement. Mech. Dev. 75, 53–66 (1998)

    Article  Google Scholar 

  17. Saga, Y., Hata, N., Koseki, H., Taketo, M.M.: Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev. 2, 835–845 (2001)

    Google Scholar 

  18. Schnell, S., Maini, P.K.: Clock and induction model for somitogenesis. Dev. Dyn. 217, 415–420 (2000)

    Article  Google Scholar 

  19. Schnell, S., Maini, P.K., McInerney, D., Gavaghan, D.J., Houston, P.: Models for pattern formation in somitogenesis: a marriage of cellular and molecular biology. C.R. Biologies 325, 179–189 (2002)

    Article  Google Scholar 

  20. Stern, C.D., Fraser, S.E., Keynes, R.J., Primmett, D.R.N.: A cell lineage analysis of segmentation in the chick embryo. Development 104S, 231–244 (1988)

    Google Scholar 

  21. Stickney, H.L., Barresi, M.S.J., Devoto, S.H.: Somite development in zebrafish. Dev. Dyn. 219, 287–303 (2000)

    Article  Google Scholar 

  22. Stockdale, F.E., Nikovits, W.J., Christ, B.: Molecular and cellular biology of avian somite development. Dev. Dyn. 219, 304–321 (2000)

    Article  Google Scholar 

  23. Tabin, C.J., Johnson, R.L.: Clocks and Hox. Nature 412, 780–781 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.E. Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, R., Schnell, S. & Maini, P. A mathematical investigation of a Clock and Wavefront model for somitogenesis. J. Math. Biol. 52, 458–482 (2006). https://doi.org/10.1007/s00285-005-0362-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-005-0362-2

Keywords or phrases

Navigation