Skip to main content
Log in

Loss of the lac Operon Contributes to Salmonella Invasion of Epithelial Cells Through Derepression of Flagellar Synthesis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Salmonella, a genus that is closely related to Escherichia coli, includes many pathogens of humans and other animals. A notable feature that distinguishes Salmonella from E. coli is lactose negativity, because the lac operon is lost in most Salmonella genomes. Here, we expressed the lac operon in Salmonella enterica serovar Typhimurium and compared the virulence of the Lac+ strain to that of the wild-type strain in a murine model, invasion assays, and macrophage replication assays. We showed that the Lac+ strain is attenuated in vivo and the attenuation of virulence is caused by its defect in epithelial cell invasion. However, the invasion-defective phenotype is unrelated to lactose utilization. Through sequencing and the comparison of the transcriptome profile between the Lac+ and wild-type strains during invasion, we found that most flagellar genes were markedly downregulated in the Lac+ strain, while other genes associated with invasion, such as the majority of genes encoded in Salmonella pathogenicity island 1, were not differentially expressed. Moreover, we discovered that lacA is the major repressor of flagellar gene expression in the lac operon. In conclusion, these data demonstrate that the lac operon decreases Salmonella invasion of epithelial cells through repression of flagellar biosynthesis. As the ability to invade epithelial cells is a critical virulence determinant of Salmonella, our results provide important evidence that the loss of the lac operon contributes to the evolution of Salmonella pathogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beltran P, Musser JM, Helmuth R, Farmer JR, Frerichs WM, Wachsmuth IK, Ferris K, McWhorter AC, Wells JG, Cravioto A, Et A (1988) Toward a population genetic analysis of Salmonella: genetic diversity and relationships among strains of serotypes S. choleraesuis, S. derby, S. dublin, S. enteritidis, S. heidelberg, S. infantis, S. newport, and S. typhimurium. Proc Natl Acad Sci U S A 85:7753–7757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bera A, Biswas R, Herbert S, Gotz F (2006) The presence of peptidoglycan O-acetyltransferase in various staphylococcal species correlates with lysozyme resistance and pathogenicity. Infect Immun 74:4598–4604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B (2000) Salmonella nomenclature. J Clin Microbiol 38:2465–2467

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Briones V, Tellez S, Goyache J, Ballesteros C, Del PLM, Dominguez L, Fernandez-Garayzabal JF (2004) Salmonella diversity associated with wild reptiles and amphibians in Spain. Environ Microbiol 6:868–871

    Article  PubMed  Google Scholar 

  5. Chattopadhyay S, Paul S, Kisiela DI, Linardopoulou EV, Sokurenko EV (2012) Convergent molecular evolution of genomic cores in Salmonella enterica and Escherichia coli. J Bacteriol 194:5002–5011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Coburn B, Grassl GA, Finlay BB (2007) Salmonella, the host and disease: a brief review. Immunol Cell Biol 85:112–118

    Article  PubMed  Google Scholar 

  7. Crosa JH, Brenner DJ, Ewing WH, Falkow S (1973) Molecular relationships among the Salmonelleae. J Bacteriol 115:307–315

    CAS  PubMed Central  PubMed  Google Scholar 

  8. de Jong HK, Parry CM, van der Poll T, Wiersinga WJ (2012) Host-pathogen interaction in invasive salmonellosis. PLoS Pathog 8:e1002933

    Article  PubMed Central  PubMed  Google Scholar 

  9. Doolittle RF, Feng DF, Tsang S, Cho G, Little E (1996) Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271:470–477

    Article  CAS  PubMed  Google Scholar 

  10. Eswarappa SM, Karnam G, Nagarajan AG, Chakraborty S, Chakravortty D (2009) lac repressor is an antivirulence factor of Salmonella enterica: its role in the evolution of virulence in Salmonella. PLoS ONE 4:e5789

    Article  PubMed Central  PubMed  Google Scholar 

  11. Finlay BB, Brumell JH (2000) Salmonella interactions with host cells: in vitro to in vivo. Philos Trans R Soc Lond B Biol Sci 355:623–631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Fookes M, Schroeder GN, Langridge GC, Blondel CJ, Mammina C, Connor TR, Seth-Smith H, Vernikos GS, Robinson KS, Sanders M, Petty NK, Kingsley RA, Baumler AJ, Nuccio SP, Contreras I, Santiviago CA, Maskell D, Barrow P, Humphrey T, Nastasi A, Roberts M, Frankel G, Parkhill J, Dougan G, Thomson NR (2011) Salmonella bongori provides insights into the evolution of the Salmonellae. PLoS Pathog 7:e1002191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Giannella RA, Washington O, Gemski P, Formal SB (1973) Invasion of HeLa cells by Salmonella typhimurium: a model for study of invasiveness of Salmonella. J Infect Dis 128:69–75

    Article  CAS  PubMed  Google Scholar 

  14. Guise AJ, Budayeva HG, Diner BA, Cristea IM (2013) Histone deacetylases in herpesvirus replication and virus-stimulated host defense. Viruses 5:1607–1632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hensel M (2004) Evolution of pathogenicity islands of Salmonella enterica. Int J Med Microbiol 294:95–102

    Article  CAS  PubMed  Google Scholar 

  16. Huang W, Wang Z, Lei QY (2014) Acetylation control of metabolic enzymes in cancer: an updated version. Acta Biochim Biophys Sin (Shanghai) 46:204–213

    Article  CAS  Google Scholar 

  17. Ibarra JA, Steele-Mortimer O (2009) Salmonella—the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell Microbiol 11:1579–1586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Isberg RR, Falkow S (1985) A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature 317:262–264

    Article  CAS  PubMed  Google Scholar 

  19. Jones BD, Lee CA, Falkow S (1992) Invasion by Salmonella typhimurium is affected by the direction of flagellar rotation. Infect Immun 60:2475–2480

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Jones GW, Richardson LA, Uhlman D (1981) The invasion of HeLa cells by Salmonella typhimurium: reversible and irreversible bacterial attachment and the role of bacterial motility. J Gen Microbiol 127:351–360

    CAS  PubMed  Google Scholar 

  21. Lan R, Reeves PR, Octavia S (2009) Population structure, origins and evolution of major Salmonella enterica clones. Infect Genet Evol 9:996–1005

    Article  CAS  PubMed  Google Scholar 

  22. Le Minor L, Veron M, Popoff M (1982) The taxonomy of Salmonella. Ann Microbiol (Paris) 133:223–243

    Google Scholar 

  23. Mahlknecht U, Hoelzer D (2000) Histone acetylation modifiers in the pathogenesis of malignant disease. Mol Med 6:623–644

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Malik-Kale P, Jolly CE, Lathrop S, Winfree S, Luterbach C, Steele-Mortimer O (2011) Salmonella—at home in the host cell. Front Microbiol 2:125

    Article  PubMed Central  PubMed  Google Scholar 

  25. Marcus SL, Brumell JH, Pfeifer CG, Finlay BB (2000) Salmonella pathogenicity islands: big virulence in small packages. Microbes Infect 2:145–156

    Article  CAS  PubMed  Google Scholar 

  26. Maurelli AT, Fernandez RE, Bloch CA, Rode CK, Fasano A (1998) “Black holes” and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc Natl Acad Sci U S A 95:3943–3948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. McClelland M, Florea L, Sanderson K, Clifton SW, Parkhill J, Churcher C, Dougan G, Wilson RK, Miller W (2000) Comparison of the Escherichia coli K-12 genome with sampled genomes of a Klebsiella pneumoniae and three Salmonella enterica serovars, Typhimurium, Typhi and Paratyphi. Nucleic Acids Res 28:4974–4986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Merhej V, Georgiades K, Raoult D (2013) Postgenomic analysis of bacterial pathogens repertoire reveals genome reduction rather than virulence factors. Brief Funct Genomics 12:291–304

    Article  CAS  PubMed  Google Scholar 

  29. Mira A, Ochman H, Moran NA (2001) Deletional bias and the evolution of bacterial genomes. Trends Genet 17:589–596

    Article  CAS  PubMed  Google Scholar 

  30. Nakata N, Tobe T, Fukuda I, Suzuki T, Komatsu K, Yoshikawa M, Sasakawa C (1993) The absence of a surface protease, OmpT, determines the intercellular spreading ability of Shigella: the relationship between the ompT and kcpA loci. Mol Microbiol 9:459–468

    Article  CAS  PubMed  Google Scholar 

  31. Olsen JE, Hoegh-Andersen KH, Casadesus J, Rosenkranzt J, Chadfield MS, Thomsen LE (2013) The role of flagella and chemotaxis genes in host pathogen interaction of the host adapted Salmonella enterica serovar Dublin compared to the broad host range serovar S. Typhimurium. BMC Microbiol 13:67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Scheelings TF, Lightfoot D, Holz P (2011) Prevalence of Salmonella in Australian reptiles. J Wildl Dis 47:1–11

    Article  PubMed  Google Scholar 

  33. Schmidt H, Hensel M (2004) Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17:14–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Schmitt CK, Ikeda JS, Darnell SC, Watson PR, Bispham J, Wallis TS, Weinstein DL, Metcalf ES, O’Brien AD (2001) Absence of all components of the flagellar export and synthesis machinery differentially alters virulence of Salmonella enterica serovar Typhimurium in models of typhoid fever, survival in macrophages, tissue culture invasiveness, and calf enterocolitis. Infect Immun 69:5619–5625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Schroeder GN, Hilbi H (2008) Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 21:134–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Sittka A, Pfeiffer V, Tedin K, Vogel J (2007) The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol Microbiol 63:193–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y, Ning ZB, Zeng R, Xiong Y, Guan KL, Zhao S, Zhao GP (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327:1004–1007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Zhang Y, Buchholz F, Muyrers JP, Stewart AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–128

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y, Muyrers JP, Testa G, Stewart AF (2000) DNA cloning by homologous recombination in Escherichia coli. Nat Biotechnol 18:1314–1317

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the International Science & Technology Cooperation Program of China (2012DFG31680), National Key Program for Infectious Diseases of China (2013ZX10004216-001-001), and National Natural Science Foundation of China (NSFC) Program (31270003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Ni, Z., Wang, L. et al. Loss of the lac Operon Contributes to Salmonella Invasion of Epithelial Cells Through Derepression of Flagellar Synthesis. Curr Microbiol 70, 315–323 (2015). https://doi.org/10.1007/s00284-014-0720-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0720-7

Keywords

Navigation