Skip to main content
Log in

Reprogramming of human peripheral blood monocytes to erythroid lineage by blocking of the PU-1 gene expression

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

In hematopoietic system development, PU.1 and GATA-1 as lineage-specific transcription factors (TF) are expressed in common myeloid progenitors. The cross antagonism between them ascertains gene expression programs of monocytic and erythroid cells, respectively. This concept in transdifferentiation approaches has not been well considered yet, especially in intralineage conversion systems. To demonstrate whether PU.1 suppression induces monocyte lineage conversion into red blood cells, a combination of three PU.1-specific siRNAs was implemented to knock down PU.1 gene expression and generate the balance in favor of GATA-1 expression to induce erythroid differentiation. For this purpose, monocytes were isolated from human peripheral blood and transfected by PU.1 siRNAs. In transfected monocytes, the rate of PU.1 expression in mRNA level was significantly decreased until 0.38 ± 0.118 when compared to untreated monocytes at 72 h (p value ≤0.05) which resulted in significant overexpression of GATA1 of 16.1 ± 0.343-fold compared to the untreated group (p value ≤0.01). Subsequently, overexpression of hemoglobin (α 13.26 ± 1.34-fold; p value≤0.0001) and β-globin (37.55 ± 16.56-fold; p value≤0.0001) was observed when compared to control groups. The results of western immunoblotting confirm those findings too. While, reduced expression of monocyte, CD14 gene, was observed in qRT-PCR and flow cytometry results. Our results suggest that manipulating the ratio of the two TFs in bifurcation differentiation pathways via applying siRNA technology can possibly change the cells’ fate as a safe way for therapeutics application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN et al (2011) Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144:296–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Iwasaki H, Mizuno S, Arinobu Y, Ozawa H, Mori Y et al (2006) The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages. Genes Dev 20:3010–3021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wilson NK, Foster SD, Wang X, Knezevic K, Schutte J et al (2010) Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7:532–544

    Article  CAS  PubMed  Google Scholar 

  4. Ebina W, Rossi DJ (2015) Transcription factor-mediated reprogramming toward hematopoietic stem cells. EMBO J 34:694–709

    Article  CAS  PubMed  Google Scholar 

  5. Rosenbauer F, Wagner K, Kutok JL, Iwasaki H, Le Beau MM et al (2004) Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 36:624–630

    Article  CAS  PubMed  Google Scholar 

  6. Verbiest T, Bouffler S, Nutt SL, Badie C (2015) PU.1 downregulation in murine radiation-induced acute myeloid leukaemia (AML): from molecular mechanism to human AML. Carcinogenesis 36:413–419

    Article  PubMed  PubMed Central  Google Scholar 

  7. Alagha A, Zaikin A (2013) Asymmetry in erythroid-myeloid differentiation switch and the role of timing in a binary cell-fate decision. Front Immunol 4:426

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gupta P, Gurudutta GU, Saluja D, Tripathi RP (2009) PU.1 and partners: regulation of haematopoietic stem cell fate in normal and malignant haematopoiesis. J Cell Mol Med 13:4349–4363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li S, Liu Y, Liu Z, Wang R (2015) Bifurcation dynamics and determination of alternate cell fates in bipotent progenitor cells. Cogn Neurodyn 9:221–229

    Article  CAS  PubMed  Google Scholar 

  10. Stopka T, Amanatullah DF, Papetti M, Skoultchi AI (2005) PU.1 inhibits the erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin structure. EMBO J 24:3712–3723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wontakal SN, Guo X, Smith C, MacCarthy T, Bresnick EH et al (2012) A core erythroid transcriptional network is repressed by a master regulator of myelo-lymphoid differentiation. Proc Natl Acad Sci U S A 109:3832–3837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heyworth C, Pearson S, May G, Enver T (2002) Transcription factor-mediated lineage switching reveals plasticity in primary committed progenitor cells. EMBO J 21:3770–3781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Choe KS, Radparvar F, Matushansky I, Rekhtman N, Han X et al (2003) Reversal of tumorigenicity and the block to differentiation in erythroleukemia cells by GATA-1. Cancer Res 63:6363–6369

    CAS  PubMed  Google Scholar 

  14. Rapino F, Robles EF, Richter-Larrea JA, Kallin EM, Martinez-Climent JA et al (2013) C/EBPalpha induces highly efficient macrophage transdifferentiation of B lymphoma and leukemia cell lines and impairs their tumorigenicity. Cell Rep 3:1153–1163

    Article  CAS  PubMed  Google Scholar 

  15. Feng R, Desbordes SC, Xie H, Tillo ES, Pixley F et al (2008) PU.1 and C/EBPalpha/beta convert fibroblasts into macrophage-like cells. Proc Natl Acad Sci U S A 105:6057–6062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  17. Graf T, Enver T (2009) Forcing cells to change lineages. Nature 462:587–594

    Article  CAS  PubMed  Google Scholar 

  18. Yamanaka S, Takahashi K (2006) Induction of pluripotent stem cells from mouse fibroblast cultures. Tanpakushitsu Kakusan Koso 51:2346–2351

    CAS  PubMed  Google Scholar 

  19. Caiazzo M, Giannelli S, Valente P, Lignani G, Carissimo A et al (2015) Direct conversion of fibroblasts into functional astrocytes by defined transcription factors. Stem Cell Reports 4:25–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee JH, Mitchell RR, McNicol JD, Shapovalova Z, Laronde S et al (2015) Single transcription factor conversion of human blood fate to NPCs with CNS and PNS developmental capacity. Cell Rep 11:1367–1376

    Article  CAS  PubMed  Google Scholar 

  21. Rekhtman N, Radparvar F, Evans T, Skoultchi AI (1999) Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev 13:1398–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Burda P, Curik N, Kokavec J, Basova P, Mikulenkova D et al (2009) PU.1 activation relieves GATA-1-mediated repression of Cebpa and Cbfb during leukemia differentiation. Mol Cancer Res 7:1693–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zou GM, Chen JJ, Yoder MC, Wu W, Rowley JD (2005) Knockdown of Pu.1 by small interfering RNA in CD34+ embryoid body cells derived from mouse ES cells turns cell fate determination to pro-B cells. Proc Natl Acad Sci U S A 102:13236–13241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. DeKoter RP, Kamath MB, Houston IB (2007) Analysis of concentration-dependent functions of PU.1 in hematopoiesis using mouse models. Blood Cells Mol Dis 39:316–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pham TH, Minderjahn J, Schmidl C, Hoffmeister H, Schmidhofer S et al (2013) Mechanisms of in vivo binding site selection of the hematopoietic master transcription factor PU.1. Nucleic Acids Res 41:6391–6402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Papetti M, Skoultchi AI (2007) Reprogramming leukemia cells to terminal differentiation and growth arrest by RNA interference of PU.1. Mol Cancer Res 5:1053–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miki K, Yoshida Y, Yamanaka S (2013) Making steady progress on direct cardiac reprogramming toward clinical application. Circ Res 113:13–15

    Article  CAS  PubMed  Google Scholar 

  28. Lin HS, Gong JN, Su R, Chen MT, Song L et al (2014) miR-199a-5p inhibits monocyte/macrophage differentiation by targeting the activin A type 1B receptor gene and finally reducing C/EBPalpha expression. J Leukoc Biol 96:1023–1035

    Article  PubMed  Google Scholar 

  29. Ziliotto R, Gruca MR, Podder S, Noel G, Ogle CK et al (2014) PU.1 promotes cell cycle exit in the murine myeloid lineage associated with downregulation of E2F1. Exp Hematol 42:204–217, e201

    Article  CAS  PubMed  Google Scholar 

  30. Kueh HY, Champhekar A, Nutt SL, Elowitz MB, Rothenberg EV (2013) Positive feedback between PU.1 and the cell cycle controls myeloid differentiation. Science 341:670–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jego G, Lanneau D, De Thonel A, Berthenet K, Hazoume A et al (2014) Dual regulation of SPI1/PU.1 transcription factor by heat shock factor 1 (HSF1) during macrophage differentiation of monocytes. Leukemia 28:1676–1686

    Article  CAS  PubMed  Google Scholar 

  32. Gu X, Hu Z, Ebrahem Q, Crabb JS, Mahfouz RZ et al (2014) Runx1 regulation of Pu.1 corepressor/coactivator exchange identifies specific molecular targets for leukemia differentiation therapy. J Biol Chem 289:14881–14895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kanherkar RR, Bhatia-Dey N, Makarev E, Csoka AB (2014) Cellular reprogramming for understanding and treating human disease. Front Cell Dev Biol 2:67

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by educational research grant from the National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolkhalegh Deezagi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouri, M., Deezagi, A. & Ebrahimi, M. Reprogramming of human peripheral blood monocytes to erythroid lineage by blocking of the PU-1 gene expression. Ann Hematol 95, 549–556 (2016). https://doi.org/10.1007/s00277-015-2583-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-015-2583-9

Keywords

Navigation