Skip to main content

Advertisement

Log in

A strategy for enhancing the engraftment of human hematopoietic stem cells in NOD/SCID mice

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

To overcome the limitations of allogeneic hematopoietic stem cell transplantation (HSCT), we conducted a study to identify a strategy for enhancing hematopoietic stem cell (HSC) engraftment during HSCT. Co-transplantation experiments with mesenchymal stem cells (MSCs) derived from adult human tissues including bone marrow (BM), adipose tissue (AT), and umbilical cord blood (CB) were conducted. We showed that AT-MSCs and CB-MSCs enhanced the engraftment of HSCs as effectively as BM-MSCs in NOD/SCID mice, suggesting that AT-MSCs and CB-MSCs can be used as alternative stem cell sources for enhancing the engraftment and homing of HSCs. CB-MSCs derived from different donors showed different degrees of efficacy in enhancing the engraftment of HSCs. The most effective CB-MSCs showed higher proliferation rates and secreted more MCP-1, RANTES, EGF, and VEGF. Our results suggest that AT-MSCs and CB-MSCs could be alternative stem cell sources for co-transplantation in HSCT. Furthermore, in terms of MSCs’ heterogeneity, characteristics of each population of MSCs are considerable factors for selecting MSCs suitable for co-transplantation with HSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  2. Caplan AI (1994) The mesengenic process. Clin Plast Surg 21:429–435

    PubMed  CAS  Google Scholar 

  3. Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28:875–884

    Article  PubMed  CAS  Google Scholar 

  4. Battiwalla M, Hematti P (2009) Mesenchymal stem cells in hematopoietic stem cell transplantation. Cytotherapy 11:503–515

    Article  PubMed  Google Scholar 

  5. Kim DH, Yoo KH, Yim YS, Choi J, Lee SH, Jung HL et al (2006) Cotransplanted bone marrow derived mesenchymal stem cells (MSC) enhanced engraftment of hematopoietic stem cells in a MSC-dose dependent manner in NOD/SCID mice. J Korean Med Sci 21:1000–1004

    Article  PubMed  Google Scholar 

  6. Tian Y, Deng YB, Huang YJ, Wang Y (2008) Bone marrow-derived mesenchymal stem cells decrease acute graft-versus-host disease after allogeneic hematopoietic stem cells transplantation. Immunol Invest 37:29–42

    Article  PubMed  CAS  Google Scholar 

  7. Rubinstein P, Rosenfield RE, Adamson JW, Stevens CE (1993) Stored placental blood for unrelated bone marrow reconstitution. Blood 81:1679–1690

    PubMed  CAS  Google Scholar 

  8. Li CD, Zhang WY, Li HL, Jiang XX, Zhang Y, Tang PH et al (2005) Mesenchymal stem cells derived from human placenta suppress allogeneic umbilical cord blood lymphocyte proliferation. Cell Res 15:539–547

    Article  PubMed  CAS  Google Scholar 

  9. Lee RH, Hsu SC, Munoz J, Jung JS, Lee NR, Pochampally R et al (2006) A subset of human rapidly self-renewing marrow stromal cells preferentially engraft in mice. Blood 107:2153–2161

    Article  PubMed  CAS  Google Scholar 

  10. Lee MW, Choi J, Yang MS, Moon YJ, Park JS, Kim HC et al (2004) Mesenchymal stem cells from cryopreserved human umbilical cord blood. Biochem Biophys Res Commun 320:273–278

    Article  PubMed  CAS  Google Scholar 

  11. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

  12. Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28:585–596

    PubMed  CAS  Google Scholar 

  13. Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988

    Article  PubMed  CAS  Google Scholar 

  14. Kaplan RN, Psaila B, Lyden D (2007) Niche-to-niche migration of bone-marrow-derived cells. Trends Mol Med 13:72–81

    Article  PubMed  CAS  Google Scholar 

  15. Cerny J, Dooner M, McAuliffe C, Habibian H, Stencil K, Berrios V et al (2002) Homing of purified murine lymphohematopoietic stem cells: a cytokine-induced defect. J Hematother Stem Cell Res 11:913–922

    Article  PubMed  CAS  Google Scholar 

  16. Han JY, Goh RY, Seo SY, Hwang TH, Kwon HC, Kim SH et al (2007) Cotransplantation of cord blood hematopoietic stem cells and culture-expanded and GM-CSF-/SCF-transfected mesenchymal stem cells in SCID mice. J Korean Med Sci 22:242–247

    Article  PubMed  Google Scholar 

  17. Fukuda S, Pelus LM (2008) Transmigration of human CD34+ cells. Methods Mol Biol 430:55–75

    Article  PubMed  CAS  Google Scholar 

  18. Nasef A, Chapel A, Mazurier C, Bouchet S, Lopez M, Mathieu N et al (2007) Identification of IL-10 and TGF-beta transcripts involved in the inhibition of T-lymphocyte proliferation during cell contact with human mesenchymal stem cells. Gene Expr 13:217–226

    Article  PubMed  Google Scholar 

  19. English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP (2009) Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(High) forkhead box P3+ regulatory T cells. Clin Exp Immunol 156:149–160

    Article  PubMed  CAS  Google Scholar 

  20. Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, Dilloo D (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103:4619–4621

    Article  PubMed  CAS  Google Scholar 

  21. Bian L, Guo ZK, Wang HX, Wang JS, Wang H, Li QF et al (2009) In vitro and in vivo immunosuppressive characteristics of hepatocyte growth factor-modified murine mesenchymal stem cells. In Vivo 23:21–27

    PubMed  CAS  Google Scholar 

  22. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    Article  PubMed  Google Scholar 

  23. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L (2006) Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107:1484–1490

    Article  PubMed  CAS  Google Scholar 

  24. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD et al (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105:4120–4126

    Article  PubMed  CAS  Google Scholar 

  25. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–372

    Article  PubMed  CAS  Google Scholar 

  26. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    Article  PubMed  CAS  Google Scholar 

  27. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  PubMed  CAS  Google Scholar 

  28. Jurgens WJ, Oedayrajsingh-Varma MJ, Helder MN, Zandiehdoulabi B, Schouten TE, Kuik DJ et al (2008) Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell Tissue Res 332:415–426

    Article  PubMed  Google Scholar 

  29. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    Article  PubMed  CAS  Google Scholar 

  30. Pricola KL, Kuhn NZ, Haleem-Smith H, Song Y, Tuan RS (2009) Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J Cell Biochem 108:577–588

    Article  PubMed  CAS  Google Scholar 

  31. Lee RH, Seo MJ, Pulin AA, Gregory CA, Ylostalo J, Prockop DJ (2009) The CD34-like protein PODXL and alpha6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice. Blood 113:816–826

    Article  PubMed  CAS  Google Scholar 

  32. Le Blanc K, Ringdén O (2005) Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 11:321–334

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of the Korean Health Technology R&D Project, Ministry for Health, Welfare and Family affairs, Republic of Korea (project no: A090729).

Conflicts of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myoung Woo Lee or Hong Hoe Koo.

Additional information

Soo Hyun Lee and Dae Seong Kim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.H., Kim, D.S., Lee, M.W. et al. A strategy for enhancing the engraftment of human hematopoietic stem cells in NOD/SCID mice. Ann Hematol 92, 1595–1602 (2013). https://doi.org/10.1007/s00277-013-1830-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-013-1830-1

Keywords

Navigation