Skip to main content

Advertisement

Log in

Melting relations of multicomponent carbonate MgCO3–FeCO3–CaCO3–Na2CO3 system at 12–26 GPa: application to deeper mantle diamond formation

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Carbonatic components of parental melts of the deeper mantle diamonds are inferred from their primary inclusions of (Mg, Fe, Ca, Na)-carbonate minerals trapped at PT conditions of the Earth’s transition zone and lower mantle. PT phase diagrams of MgCO3–FeCO3–CaCO3–Na2CO3 system and its ternary MgCO3–FeCO3–Na2CO3 boundary join were studied at pressures between 12 and 24 GPa and high temperatures. Experimental data point to eutectic solidus phase relations and indicate liquidus boundaries for completely miscible (Mg, Fe, Ca, Na)- and (Mg, Fe, Ca)-carbonate melts. PT fields for partial carbonate melts associated with (Mg, Fe)-, (Ca, Fe, Na)-, and (Na2Ca, Na2Fe)-carbonate solid solution phases are determined. Effective nucleation and mass crystallization of deeper mantle diamonds are realized in multicomponent (Mg, Fe, Ca, Na)-carbonatite–carbon melts at 18 and 26 GPa. The multicomponent carbonate systems were melted at temperatures that are lower than the geothermal ones. This gives an evidence for generation of diamond-parental carbonatite melts and formation of diamonds at the PT conditions of transition zone and lower mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaogi M (2007) Phase transitions of minerals in the transition zone and upper part of the lower mantle. In: Ohtani E (ed) Advances in high-pressure mineralogy. Geological society of America special paper 421. Geological society of America, Boulder, pp 1–13

    Google Scholar 

  • Boulard E, Gloter A, Corgne A, Antonangeli D, Auzende AL, Perrillat JP, Guyot F, Fiquet G (2011) New host for carbon in the deep Earth. PNAS 108(13):5184–5187. doi:10.1073/pnas.1016934108

    Article  Google Scholar 

  • Brenker FE, Vollmer C, Vincze L, Vekemans B, Szymanski A, Janssens K, Szaloki I, Nasdala L, Kaminsky F (2007) Carbonates from the lower part of transition zone or even the lower mantle. EPSL 260:1–9. doi:10.1016/j.epsl.2007.02.038

    Article  Google Scholar 

  • Bundy FP, Basset WA, Weathers MS, Hemley RJ, Mao H-K, Goncharov AF (1996) The pressure–temperature phase and transformation diagram for carbon updated through 1994. Carbon 34:141–153

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. EPSL 298:1–13. doi:10.1016/j.epsl.2010.06.039

    Article  Google Scholar 

  • Fiquet G, Guyot F, Kunz M, Matas J, Andrault D, Hanfland M (2002) Structural refinements of magnesite at very high pressure. Am Miner 87:1261–1265

    Article  Google Scholar 

  • Frost DJ, Poe BT, Tronnes RG, Libske C, Duba F, Rubie DC (2004) A new large-volume multianvil system. PEPI 143:507–514. doi:10.1016/j.pepi.2004.03.003

    Google Scholar 

  • Harte B (2010) Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineral Mag 74(2):189–215. doi:10.1180/minmag.2010.074.2.189

    Article  Google Scholar 

  • Isshiki M, Irifune T, Hirose K, Ono S, Ohishi Y, Watanuki T, Nishibori E, Takata M, Sakata M (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 427:60–63. doi:10.1038/nature02181

    Article  Google Scholar 

  • Kaminsky F (2012) Mineralogy of the lower mantle: a review of ‘super-deep’ mineral inclusions in diamond. Earth Sci Rev 110:127–147. doi:10.1016/j.earscirev.2011.10.005

    Article  Google Scholar 

  • Litvin YuA (2009) The physicochemical conditions of diamond formation in the mantle matter: experimental studies. Russian Geol Geophys 50(12):1188–1200. doi:10.1016/j.rgg.2009.11.017

    Article  Google Scholar 

  • Litvin YuA (2007) High-pressure mineralogy of diamondgenesis. In: Ohtani E (ed) Advances in high-pressure mineralogy. Geological society of America special paper 241. Geological society of America, Boulder, pp 83–103

    Chapter  Google Scholar 

  • Litvin YuA, Litvin VYu, Kadik AA (2008) Experimental characterization of diamond crystallization in melts of mantle silicate–carbonate–carbon systems at 7.0–8.5 GPa. Geochem Intern 46(6):531–553. doi:10.1134/S0016702908060013

    Article  Google Scholar 

  • Litvin YuA, Vasiliev PG, Bobrov AV, Okoemova VYu, Kuzyura AV (2012) Parental media of natural diamonds and primary mineral inclusions in them: evidence from physicochemical experiment. Geochem Int 50(9):726–759. doi:10.1134/S0016702912070051

    Article  Google Scholar 

  • Litvin YuA, Spivak AV, Solopova NA, Dubrovinsky LS (2014) On origin of lower-mantle diamonds and their primary inclusions. PEPI 228:176–185. doi:10.1016/j.pepi.2013.12.007

    Google Scholar 

  • McCammon C, Hutchison MT, Harris JW (1997) Ferric iron content of mineral inclusions in diamonds from São Luiz: a view into the lower mantle. Science 278:434–436. doi:10.1126/science.278.5337.434

    Article  Google Scholar 

  • Merlini M, Crichton W, Hanfland M, Gemmi M, Mueller H, Kupenko I, Dubrovinsky L (2012) Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proc Natl Acad Sci USA 109(34):13509–13514. doi:10.1073/pnas.1201336109

    Article  Google Scholar 

  • Santillan J, Williams Q (2004a) A high pressure X-ray diffraction study of aragonite and the post-aragonite phase transition in CaCO3. Am Miner 89:1348–1352

    Article  Google Scholar 

  • Santillan J, Williams Q (2004b) A high-pressure infrared and X-ray study of FeCO3 and MnCO3: comparison with CaMg(CO3)2-dolomite. PEPI 143:291–304. doi:10.1016/j.pepi.2003.06.007

    Google Scholar 

  • Skorodumova NV, Belonoshko AB, Huang L, Ahuja R, Johansson B (2005) Stability of the MgCO3 structures under lower mantle conditions. Am Miner 90:1008–1011. doi:10.2138/am.2005.1685

    Article  Google Scholar 

  • Solopova NA, Litvin YuA, Spivak AV, Dubrovinskaia NA, Dubrovinsky LS, Urusov VS (2013) Phase diagram of Na-carbonate, the alkaline component of growth media of the super-deep diamond. Dokl Earth Sci 453(1):1106–1109. doi:10.1134/S1028334X13110068

    Article  Google Scholar 

  • Spivak AV, Dubrovinskii LS, Litvin YuA (2011) Congruent melting of calcium carbonate in a static experiment at 3500 K and 10–22 GPa: its role in the genesis of ultra-deep diamonds. Dokl Earth Sci 439(2):1171–1174. doi:10.1134/S1028334X11080319

    Article  Google Scholar 

  • Spivak AV, Litvin YuA, Ovsyannikov SV, Dubrovinskaia N, Dubrovinsky LS (2012) Stability and breakdown of Ca13CO3 melt associated with formation of 13C-diamond in high-pressure static experiments up to 43 GPa and 3900 K. J Solid State Chem 19:102–106. doi:10.1016/j.jssc.2012.02.041

    Article  Google Scholar 

  • Spivak AV, Solopova NA, Litvin YuA, Dubrovinsky LS (2013) Carbonate melts at lower mantle conditions: to superdeep diamonds genesis. Mineral J (Ukraine) 35(2):73–80 in Russian

    Google Scholar 

  • Stacey FD (1992) Physics of the earth, 3rd edn. Brookfield Press, Brisbane

    Google Scholar 

  • Stagno V, Tange Y, Miyajima N, McCammon CA, Irifune T, Frost DJ (2011) The stability of magnesite in the transition zone and the lower mantle as function of oxygen fugacity. Geophys Res Lett 38:L19309. doi:10.1029/2011GL049560

    Google Scholar 

Download references

Acknowledgments

This work was funded by Program 12P/2 of Russian Academy of Sciences and Grants RFBR 13-05-00835, 14-05-31142.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Spivak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spivak, A., Solopova, N., Dubrovinsky, L. et al. Melting relations of multicomponent carbonate MgCO3–FeCO3–CaCO3–Na2CO3 system at 12–26 GPa: application to deeper mantle diamond formation. Phys Chem Minerals 42, 817–824 (2015). https://doi.org/10.1007/s00269-015-0765-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-015-0765-6

Keywords

Navigation