Skip to main content

Advertisement

Log in

Chromium solubility in MgSiO3 ilmenite at high pressure

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The crystal structure and chemical composition of crystals of (Mg1−x Cr x )(Si1−x Cr x )O3 ilmenite (with x = 0.015, 0.023 and 0.038) synthesized in the model system Mg3Cr2Si3O12–Mg4Si4O12 at 18–19 GPa and 1,600 °C have been investigated. Chromium was found as substitute for both Mg at the octahedral X site and Si at the octahedral Y site, according to the reaction Mg2+ + Si4+ = 2Cr3+. Such substitutions cause a shortening of the <X–O> and a lengthening of the <Y–O> distances with respect to the values typically observed for pure MgSiO3 ilmenite and eskolaite Cr2O3. Although no high Cr contents are considered in the pyrolite model, Cr-bearing ilmenite may be the host for chromium in the Earth’s transition zone. The successful synthesis of ilmenite with high Cr contents and its structural characterization are of key importance because the study of its thermodynamic constants combined with the data on phase relations in the lower-mantle systems can help in the understanding of the seismic velocity and density profiles of the transition zone and the constraining composition and mineralogy of pyrolite in this area of the Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaogi M, Tanaka A, Ito E (2002) Garnet–ilmenite–perovskite transitions in the system Mg4Si4O12–Mg3Al2Si3O12 at high pressures and high temperatures: phase equilibria, calorimetry and implications for mantle structure. Phys Earth Planet Inter 132:303–324

    Article  Google Scholar 

  • Albee AL, Ray L (1970) Correction factors for electron probe analysis of silicate, oxides, carbonates, phosphates, and sulfates. Anal Chem 48:1408–1414

    Article  Google Scholar 

  • Allègre JA, Poirier JP, Humler E, Hofmann AW (1995) The chemical composition of the Earth. Earth Plan Sci Lett 134:515–526

    Article  Google Scholar 

  • Bence AE, Albee AL (1968) Empirical correction factors for the electron microanalysis of silicate and oxides. J Geol 76:382–403

    Article  Google Scholar 

  • Bindi L, Sirotkina E, Bobrov AV, Irifune T (2014a) Chromium solubility in perovskite at high pressure: The structure of (Mg1−x Cr x )(Si1−x Cr x )O3 (with x = 0.07) synthesized at 23 GPa and 1600 °C. Am Miner. doi:10.2138/am.2014.4784

  • Bindi L, Sirotkina E, Bobrov AV, Irifune T (2014b) X-ray single-crystal structural characterization of MgCr2O4, a post-spinel phase synthesized at 23 GPa and 1600 °C. J Phys Chem Solids 75:638–641

    Article  Google Scholar 

  • Bykova E, Bobrov AV, Sirotkina EA, Bindi L, Ovsyannikov SV, Dubrovinsky LS, Litvin YuA (2013) X-ray single-crystal and Raman study of knorringite, Mg3(Cr1.58Mg0.21Si0.21)Si3O12, synthesized at 16 GPa and 1600 °C. Phys Chem Miner. doi:10.1007/s00269-013-0644-y

  • Dobson DP, Jacobsen SD (2004) The flux growth of magnesium silicate perovskite single crystals. Am Miner 89:807–811

    Google Scholar 

  • Horiuchi H, Hirano M, Ito E, Matsui Y (1982) MgSiO3 (ilmenite-type): single crystal X-ray diffraction study. Am Miner 67:788–793

    Google Scholar 

  • Ibers JA, Hamilton WC (eds) (1974) International tables for X-ray crystallography, vol IV. Kynock, Dordrecht, p 366

    Google Scholar 

  • Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H, Funakoshi K (2004) Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature. Phys Earth Planet Inter 143–144:593–600

    Article  Google Scholar 

  • Ito E, Navrotsky A (1985) MgSiO3 ilmenite; Calorimetry, phase equilibria and decomposition at atmospheric pressure. Am Miner 70:1020–1026

    Google Scholar 

  • Ito E, Yamada H (1982) Stability relations of silicate spinels, ilmenites and perovskites. In: Akimoto S, Manghnani MH (eds) High pressure research in geophysics. Center of Academic Publications, Tokyo, pp 405–419

    Chapter  Google Scholar 

  • Karki B, Duan W, da Silva CRS, Wentzcovitch RM (2000) Ab initio structure of MgSiO3 ilmenite at high pressure. Am Miner 85:317–320

    Google Scholar 

  • Katsura T, Ito E (1989) The system Mg2SiO4–Fe2SiO4 at high pressure and temperatures: precise determination of stabilities of olivine, modified spinel, and spinel. J Geophys Res 94:15663–15670

    Article  Google Scholar 

  • Kubo A, Akaogi M (2000) Post-garnet transitions in the system Mg4Si4O12–Mg3Al2Si3O12 up to 28 GPa: phase relations of garnet, ilmenite and perovskite. Phys Earth Planet Inter 121:85–102

    Article  Google Scholar 

  • Matsui M, Akaogi M, Matsumoto T (1987) Computational model of the structural and elastic properties of the ilmenite and perovskite phase of MgSiO3. Phys Chem Miner 14:101–106

    Article  Google Scholar 

  • Miyajima N, El Goresy A, Dupas-Bruzek C, Seifert F, Rubie DC, Chen M, Xie X (2007) Ferric iron in Al-bearing akimotoite coexisting with iron–nickel metal in a shock-melt vein in an L-6 chondrite. Am Miner 92:1545–1549

    Article  Google Scholar 

  • Niu F, Kawakatsu H (1996) Complex structure of mantle discontinuities at the tip of the subducting slab beneath northeast China. J Phys Earth 44:701–711

    Article  Google Scholar 

  • O’Neill HStC, Palme H (1998) Composition of the silicate earth: implications for accretion and core formation. In: Jackson I (ed) The Earth’s mantle-composition, structure and evolution. Cambridge University Press, UK, pp 3–126

    Google Scholar 

  • Ovsyannikov S, Dubrovinsky L (2011) High-pressure high-temperature synthesis of Cr2O3 and Ga2O3. High Pres Res 31:23–29

    Article  Google Scholar 

  • Oxford Diffraction (2006) CrysAlis RED (Version 1.171.31.2) and ABSPACK in CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England

  • Panero WR, Akber-Knutson S, Stixrude L (2006) Al2O3 incorporation in MgSiO3 perovskite and ilmenite. Earth Plan Sci Lett 252:152–161

    Article  Google Scholar 

  • Reynard B, Rubie DC (1996) High-pressure, high-temperature Raman spectroscopic study of ilmenite type MgSiO3. Am Miner 81:1092–1096

    Google Scholar 

  • Reynard B, Fiquet G, Itie JP, Rubie DC (1996) High-pressure X-ray diffraction study and equation of state of MgSiO3 ilmenite. Am Miner 81:45–50

    Google Scholar 

  • Ringwood AE (1979) Origin of the earth and moon. Springer, New York

    Book  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  • Sawamoto H (1987) Phase diagram of MgSiO3 at pressure up to 24 GPa and temperatures up to 2200 °C: Phase stability and properties of tetragonal garnet. In: Manghnai MH, Syono Y (eds) High-pressure research in mineral physics. American Geophysical Union, Washington, pp 209–219

    Google Scholar 

  • Sharp TG, Lingemann CM, Dupas C, Stöffler D (1997) Natural occurrence of MgSiO3-lmenite and evidence for MgSiO3-perovskite in a shocked L chondrite. Science 277:352–355

    Article  Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122

    Article  Google Scholar 

  • Tomioka N, Fujino K (1997) Natural (Mg, Fe)SiO3-ilmenite and perovskite in the Tenham meteorite. Science 277:352–355

    Article  Google Scholar 

  • Tomioka N, Fujino K (1999) Akimotoite, (Mg, Fe)SiO3, a new silicate mineral of the ilmenite group in the Tenham chondrite. Am Miner 84:267–271

    Google Scholar 

  • Weidner DJ, Wang Y (1998) Chemical and Clapeyron induced buoyancy at the 660 km discontinuity. J Geophys Res 103:7431–7442

    Article  Google Scholar 

  • Yamada A, Inoue T, Irifune T (2004) Melting of enstatite from 13 to 18 GPa under hydrous conditions. Phys Earth Planet Inter 147:45–56

    Article  Google Scholar 

  • Yamanaka T, Komatsu Y, Sugahara M, Nagai T (2005) Structure change of MgSiO3, MgGeO3, and MgTiO3 ilmenites under compression. Am Miner 90:1301–1307

    Article  Google Scholar 

  • Zhang J, Weidner DJ (1999) Thermal equation of state of aluminum-enriched silicate perovskite. Science 284:782–784

    Article  Google Scholar 

Download references

Acknowledgments

The manuscript took advantage from the revision of two anonymous reviewers. The research was supported by “progetto di Ateneo 2012, University of Firenze” to LB, by C.N.R., Istituto di Geoscienze e Georisorse sezione di Firenze, Italy, the Russian Foundation for Basic Research (Project Nos. 12-05-00426, 12-05-33044, and 14-05-31288) and by the Foundation of the President of the Russian Federation for Leading Scientific Schools (Project No. NSh-5877.2012.5) to ES and AB. ES thanks Geodynamics Research Center, Ehime University, Matsuyama, Japan, for support of her visit in 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Bindi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bindi, L., Sirotkina, E.A., Bobrov, A.V. et al. Chromium solubility in MgSiO3 ilmenite at high pressure. Phys Chem Minerals 41, 519–526 (2014). https://doi.org/10.1007/s00269-014-0662-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0662-4

Keywords

Navigation