Skip to main content

Advertisement

Log in

The PVT equation of state of CaPtO3 post-perovskite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Orthorhombic post-perovskite CaPtO3 is isostructural with post-perovskite MgSiO3, a deep-Earth phase stable only above 100 GPa. Energy-dispersive X-ray diffraction data (to 9.4 GPa and 1,024 K) for CaPtO3 have been combined with published isothermal and isobaric measurements to determine its PVT equation of state (EoS). A third-order Birch–Murnaghan EoS was used, with the volumetric thermal expansion coefficient (at atmospheric pressure) represented by α(T) = α0 + α1(T). The fitted parameters had values: isothermal incompressibility, \( K_{{T_{0} }} \) = 168.4(3) GPa; \( K_{{T_{0} }}^{\prime } \) = 4.48(3) (both at 298 K); \( \partial K_{{T_{0} }} /\partial T \) = −0.032(3) GPa K−1; α0 = 2.32(2) × 10−5 K−1; α1 = 5.7(4) × 10−9 K−2. The volumetric isothermal Anderson–Grüneisen parameter, δ T , is 7.6(7) at 298 K. \( \partial K_{{T_{0} }} /\partial T \) for CaPtO3 is similar to that recently reported for CaIrO3, differing significantly from values found at high pressure for MgSiO3 post-perovskite (−0.0085(11) to −0.024 GPa K−1). We also report axial PVT EoS of similar form, the first for any post-perovskite. Fitted to the cubes of the axes, these gave \( \partial K_{{aT_{0} }} /\partial T \) = −0.038(4) GPa K−1; \( \partial K_{{bT_{0} }} /\partial T \) = −0.021(2) GPa K−1; \( \partial K_{{cT_{0} }} /\partial T \) = −0.026(5) GPa K−1, with δ T  = 8.9(9), 7.4(7) and 4.6(9) for a, b and c, respectively. Although \( K_{{T_{0} }} \) is lowest for the b-axis, its incompressibility is the least temperature dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The Supplementary information deposited with this paper gives additional explanations and details that would otherwise not be published. No essential information is contained therein.

References

  • Aizawa Y, Yoneda A (2006) P-V–T equation of state of MgSiO3 perovskite and MgO periclase: implication for lower mantle composition. Phys Earth Plan Int 155:87–95

    Article  Google Scholar 

  • Angel RJ (2000) Equations of state. In: Hazen RM, Downs RT (eds) Reviews in mineralogy and geochemistry, vol 41. Mineralogical Society of America, Washington

    Google Scholar 

  • Angel RJ (2001) EOS-FIT V5.2. Computer program. Crystallography laboratory, Department of Geological Sciences, Virginia Tech, Blacksburg, Virginia, USA

  • Birch F (1978) Finite strain isotherm and velocities for single crystal NaCl at high pressures and 300 degrees K. J Geophys Res 83:1257–1268

    Article  Google Scholar 

  • Brown JM (1999) The NaCl pressure standard. J Appl Phys 86(10):5801–5808

    Article  Google Scholar 

  • Cahen D, Ibers JA, Mueller MH (1974) Platinum bronzes II crystal structure of CaPt2O4 and Cd0.3Pt3O4. Inorg Chem 13:110–115

    Article  Google Scholar 

  • Dobson DP, Hunt SA, Lindsay-Scott A, Wood IG (2011) Towards better analogues for MgSiO3 post-perovskite: NaCoF3 and NaNiF3, two new recoverable fluoride post-perovskites. Phys Earth Plan Int 189:171–175. doi:10.1016/j.pepi.2011.08.010

    Article  Google Scholar 

  • Guignot N, Andrault D, Morard G, Bolfan-Casanova N, Mezouar M (2007) Thermoelastic properties of post-perovskite phase MgSiO3 determined experimentally at core-mantle boundary P-T conditions. Earth Planet Sci Lett 256:162–168

    Article  Google Scholar 

  • Inaguma Y, Hasumi K, Yoshida M, Ohba T, Katsumata T (2008) High-pressure synthesis, structure, and characterization of a post-perovskite CaPtO3 with CaIrO3-type structure. Inorg Chem 47:1868–1870

    Article  Google Scholar 

  • Katsura T, Yokoshi S, Kawabe K, Shatskiy A, Manthilake AMGM, Zhai S, Fukui H, Hegoda HACI, Yoshino T, Yamazaki D, Matsuzaki T, Yoneda A, Ito E, Sugita M, Tomioka N, Hagiya K, Nozawa A, Funakoshi K (2009) P-V-T relations of MgSiO3 perovskite determined by in situ X-ray diffraction using a large-volume high-pressure apparatus. Geophys Res Lett 36:L01305. doi:10.1029/2008GL035658

    Article  Google Scholar 

  • Komabayashi T, Hirose K, Sugimura E, Sata N, Ohishi Y, Dubrovinsky LS (2008) Simultaneous volume measurements of post-perovskite and perovskite in MgSiO3 and their thermal equations of state. Earth Planet Sci Lett 265:515–524

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (1994) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86-748

  • Le Bail A, Duroy H, Fourquet JL (1988) Ab initio structure determination of LiSbWO6 by X-ray powder diffraction. Mat Res Bull 23:447–452

    Article  Google Scholar 

  • Lindsay-Scott A (2012) The thermoelastic properties of post-perovskite analogue phases. Ph.D. Thesis, University College London.

  • Lindsay-Scott A, Wood IG, Dobson D, Vočadlo L, Brodholt JP, Crichton W, Hanfland M, Taniguchi T (2010) The isothermal equation of state of CaPtO3 post-perovskite to 40 GPa. Phys Earth Plan Int 162:113–118

    Article  Google Scholar 

  • Lindsay-Scott A, Wood IG, Dobson D, Vočadlo L, Brodholt JP, Knight KS, Tucker MG, Taniguchi T (2011) Thermoelastic properties and crystal structure of CaPtO3 post-perovskite from 0 to 9 GPa and from 2 to 973 K. J Appl Cryst 44:999–1016

    Article  Google Scholar 

  • Liu W, Whitaker ML, Liu Q, Wang L, Nishiyama N, Wang Y, Kubo A, Duffy TS, Li B (2011) Thermal equation of state of CaIrO3 post-perovskite. Phys Chem Miner 38:407–417

    Article  Google Scholar 

  • Murakami M, Hirose K, Kawamora K, Sata N, Ohishi Y (2004) Post perovskite phase transition in MgSiO3. Science 304:855–858

    Article  Google Scholar 

  • Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in earth’s D′′ layer. Nature 430:445–448

    Article  Google Scholar 

  • Ohgushi K, Matsushita Y, Miyajima N, Katsuya Y, Tanaka M, Izumi F, Gotou H, Ueda Y, Yagi T (2008) CaPtO3 as a novel post-perovskite oxide. Phys Chem Miner 35:189–195

    Article  Google Scholar 

  • Shirako Y, Shi YG, Aimi A, Mori D, Kojitani HK, Yamaura KY, Inaguma Y, Akaogi M (2012) High-pressure stability relations, crystal structures, and physical properties of perovskite and post-perovskite of NaNiF3. J Solid State Chem 191:167–174

    Article  Google Scholar 

  • Stackhouse S, Brodholt JP, Wookey J, Kendall J-M, Price GD (2005) The effect of temperature on the seismic anisotropy of the perovskite and post-perovskite polymorphs of MgSiO3. Earth Planet Sci Lett 230:1–10

    Article  Google Scholar 

  • Tateno S, Hirose K, Sata N, Ohishi Y (2009) Determination of post-perovskite phase transition boundary up to 4400 K and implications for thermal structure in D’’ layer. Earth Planet Sci Lett 277:130–136

    Article  Google Scholar 

  • Tateno S, Hirose K, Sata N, Ohishi Y (2010) Structural distortion of CaSnO3 perovskite under pressure and the quenchable post-perovskite phase as a low-pressure analogue to MgSiO3. Phys Earth Plan Int 181:54–59

    Article  Google Scholar 

  • Thompson P, Wood IG (1983) X-ray Rietveld refinement using Debye-Scherrer geometry. J Appl Cryst 16:458–472

    Article  Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Cryst 34:210–221

    Article  Google Scholar 

  • Weidner DJ, Vaughan MT, Wang L, Long H, Li L, Dixon NA, Durham WB (2010) Precise stress measurements with white synchrotron X-rays. Rev Sci Instrum 81:013903

    Article  Google Scholar 

  • Wood IG, Vočadlo L, Dobson DP, Price GD, Fortes AD, Cooper FJ, Neale JW, Walker AM, Marshall WG, Tucker MG, Francis DJ, Stone HJ, McCammon CA (2008) Thermoelastic properties of magnesiowüstite, (Mg1-xFex)O: determination of the Anderson–Grüneisen parameter by time-of-flight neutron powder diffraction at simultaneous high pressures and temperatures. J Appl Cryst 41:886–896

    Article  Google Scholar 

Download references

Acknowledgments

Matthew Whitaker is thanked for experimental assistance at NSLS. SAH was funded by NERC post-doctoral research fellowship NE/H016309/1. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. Use of the X17B2 beam-line was supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 10-43050 and by the Mineral Physics Institute, Stony Brook University. We thank two anonymous reviewers for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon A. Hunt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 169 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, S.A., Lindsay-Scott, A., Wood, I.G. et al. The PVT equation of state of CaPtO3 post-perovskite. Phys Chem Minerals 40, 73–80 (2013). https://doi.org/10.1007/s00269-012-0548-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-012-0548-2

Keywords

Navigation