Skip to main content
Log in

Single-crystal EPR study of three radiation-induced defects (Al–O2 3−, Ti3+ and W5+) in stishovite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Single-crystal electron paramagnetic resonance spectra of electron-irradiated stishovite, measured at temperatures from 3.5 to 294 K, reveal three S = 1/2 radiation-induced defects: an aluminum-associated oxygen hole center and two nd 1 centers (Ti3+ and W5+). The aluminum-associated oxygen hole center, characterized by an orthorhombic site symmetry, coaxial matrices of the electronic Zeeman g, nuclear hyperfine A(27Al) and nuclear quadrupole P(27Al), and the orientation of the g-minimum axis along an O–O direction and those of the unique A(27Al) and P(27Al) axes perpendicular to the O–O direction, is an Al–O2 3− center, with the unpaired electron equally distributed on two equatorial oxygen atoms of a substitutional Al3+ ion at the octahedral Si site. Fully optimized Al-doped structure, theoretical 27Al nuclear hyperfine and quadrupole coupling constants and directions, and 3D spin densities from periodic hybrid density functional theory calculations provide further support for this structural model. Spin Hamiltonian parameters of the Ti3+ and W5+ centers, which are confirmed by their diagnostic 47Ti, 49Ti and 183W hyperfine structures, arise from electron trapping on substitutional Ti4+ and W6+ ions at the octahedral Si site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Becke AD (1988) Density-functional thermochemistry. III The role of exact exchange. J Chem Phys 98:5648–5652

    Article  Google Scholar 

  • Bill H (1969) Investigation on colour centres in alcaline earth fluorides. Helv Phys Acta 42:771–797

    Google Scholar 

  • Botis SM, Pan Y (2010) Theoretical modeling of the Al paramagnetic center and its precursors in stishovite. Phys Chem Minerals 37:119–127

    Article  Google Scholar 

  • Botis SM, Pan Y (2011) Modeling of [AlO4/Li+]+ paramagnetic defects in α-quartz. Can J Phys 89:809–816

    Article  Google Scholar 

  • Botis S, Nokhrin S, Pan Y, Xu Y, Bonli T, Sopuck V (2005) Natural radiation-induced damage in quartz. I. Correlations between cathodoluminescence colors and paramagnetic defects. Can Mineral 43:1565–1580

    Article  Google Scholar 

  • Botis SM, Adriaens DA, Pan Y (2009) Ab initio calculations on the O23–Y3 + center in CaF2 and SrF2: its electronic structure and hyperfine constants. Phys Chem Minerals 36:1–7

    Article  Google Scholar 

  • Brant AT, Yang S, Giles NC, Halliburton LE (2011) Hydrogen donors and Ti3+ ions in reduced TiO2 crystals. J Appl Phys 110:053714

    Article  Google Scholar 

  • Che M, Tench AJ (1983) Characterization and reactivity of molecular oxygen species on oxide surfaces. Adv Catal 32:1–148

    Article  Google Scholar 

  • Chester PF (1961) Electron paramagnetic resonance in semiconducting rutile. J Appl Phys 32:2233–2236

    Article  Google Scholar 

  • Devine RAB, Hubner K (1989) Radiation-induced defects in dense phases of crystalline and amorphous SiO2. Phys Rev B 40:7281–7283

    Article  Google Scholar 

  • Escudero A, Delevoye L, Langenhorst F (2011) Aluminum incorporation in TiO2 rutile at high pressure: an XRD and high-resolution 27Al NMR study. J Phys Chem C 115:12196–12201

    Article  Google Scholar 

  • Gensenhues U, Rentschler T (1999) Crystal growth and defect structure of Al3+-doped rutile. J Solid State Chem 143:210–218

    Article  Google Scholar 

  • Howarth DF, Mombourquette MJ, Weil JA (1997) The magnetic properties of the oxygen-hole aluminum centres in crystalline SiO2. V. 17O-enriched [AlO4/Li]+ and dynamics thereof. Can J Phys 75:99–115

    Google Scholar 

  • Ikeya M (1993) New applications of electron paramagnetic resonance: ESR dating, dosimetry, and spectroscopy. World Scientific, Singapore

    Google Scholar 

  • Islam MM, Bredow T, Gerson A (2007) Electronic properties of oxygen-deficient and aluminum-doped rutile TiO2 from first principles. Phys Rev B 76:045217

    Article  Google Scholar 

  • Iwaszuk A, Nolan M (2011) Charge compensation in trivalent cation doped bulk rutile TiO2. J Phys: Condens Matter 23:334207

    Article  Google Scholar 

  • Kerssen J, Volger J (1973) Electron paramagnetic resonance study of slightly reduced rutile (TiO2) crystals. Physica 69:535–561

    Article  Google Scholar 

  • Kingsbury PI, Ohlsen WD, Johnson OW (1968) Defects in rutile. I. Electron paramagnetic resonance of interstitially doped n-type rutile. Phys Rev 175:1091–1098

    Article  Google Scholar 

  • Lee C, Yang W, Parr RG (1988) Development of the Cole-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:758–789

    Google Scholar 

  • Li Z, Pan Y (2011) First-principles study of boron oxygen hole centers in crystals: electronic structures and nuclear hyperfine and quadrupole parameters. Phys Rev B 84:115112

    Article  Google Scholar 

  • Lunsford JH (1973) ESR of adsorbed oxygen species. Catal Rev 8:135–156

    Article  Google Scholar 

  • Mackey JH (1963) ERP study of impurity-related color centers in germanium-doped quartz. J Chem Phys 39:74–83

    Article  Google Scholar 

  • Mackey JH, Boss JW, Wood DE (1970) EPR study of substitutional-aluminum-related hole centers in synthetic α-quartz. J Magn Reson 3:44–54

    Google Scholar 

  • Madacsi DP, Stapelbroek M, Bossoli RB, Gilliam OR (1982) Superhyperfine interactions and their origins for nd1 ions in rutile structure oxides. J Chem Phys 77:3803–3809

    Article  Google Scholar 

  • Mao M, Nilges MJ, Pan Y (2010) Radiation-induced defects in apophyllites. II. An O center and related O–O pairs in hydroxylapophyllite. Eur J Mineral 22:89–102

    Article  Google Scholar 

  • Marfunin AS (1979) Spectroscopy. Luminescence and radiation centers in minerals. Springer, Berlin

    Book  Google Scholar 

  • McGavin DG, Tennant WC (2009) Higher-order Zeeman and spin terms in the electron paramagnetic resonance spin Hamiltonian; their description in irreducible form using Cartesian, tesseral spherical tensor and Stevens’ operator expressions. J Phys Conden Matter 21:245501

    Article  Google Scholar 

  • Murphy DM, Chiesa M (2004) EPR of paramagnetic centres on solid surfaces. Electron Paramag Reson 19:279–317

    Article  Google Scholar 

  • Nilges MJ, Pan Y, Mashkovtsev RI (2008) Radiation-damage-induced defects in quartz. I. Single crystal W-band EPR study of hole-centers in an electron-irradiated quartz. Phys Chem Minerals 32:103–115

    Article  Google Scholar 

  • Nuttall RHJ, Weil JA (1981) The magnetic properties of the oxygen-hole aluminum centers in crystalline SiO2. II. [AlO4/H+]+ and [AlO4/Li+]+. Can J Phys 59:1709–1718

    Article  Google Scholar 

  • Ogoh K, Yamanaka C, Toyoda S, Ikeya M, Ito E (1994) EPR studies on radiation-induced defects in high pressure phase SiO2. Nuclear Instr Meth Phys Res Sect B: Beam Inter Materials Atoms 91:331–333

    Article  Google Scholar 

  • Ogoh K, Yamanaka C, Ikeya M (1995) Hyperfine interaction of electron at oxygen vacancy with the nearest and next-nearest Si-29 in high-pressure-phase SiO2—stishovite. J Phys Soc Japan 11:4109–4112

    Google Scholar 

  • Ogoh K, Yamanaka C, Ikeya M, Ito E (1996a) Two center model for radiation induced aluminum hole center in stishovite. J Phys Chem Solids 57:85–88

    Article  Google Scholar 

  • Ogoh K, Takaki S, Yamanaka C, Ikeya M, Ito E (1996b) Thermoluminescence and electron spin resonance of atomic hydrogens in coesite and stishovite, high pressure phase of SiO2. J Phys Soc Jap 65:844–847

    Article  Google Scholar 

  • Pan Y, Mashkovtsev RI, Huang D, Mao M, Shatskiy A (2011) Mechanisms of Cr and H incorporation in stishovite determined by single-crystal EPR spectroscopy and DFT calculations. Am Mineral 96:1331–1342

    Article  Google Scholar 

  • Shatskiy A, Yamazaki D, Borzdov YM, Matsuzaki T, Litasov KD, Cooray T, Ferot A, Ito E, Katsura T (2010) Stishovite single-crystal growth and application to silicon self-diffusion measurements. Am Mineral 95:135–143

    Article  Google Scholar 

  • Shirley R, Kraft M, Inderwildi OR (2010) Electronic and optical properties of aluminum-doped anatase and rutile TiO2 from ab initio calculations. Phys Rev B 81:075111

    Article  Google Scholar 

  • Stapelbroek M, Bartram RH, Gilliam OR, Madacsi DP (1976) ESR investigation of the [Al]0 center in tetragonal GeO2. Phys Rev B 13:1960–1966

    Article  Google Scholar 

  • Stapelbroek M, Bartram RH, Gilliam OR (1977) Nuclear Zeeman and quadrupole effects of the [Al]0 center in tetragonal GeO2. Phys Rev B 16:4737–4742

    Article  Google Scholar 

  • Tani A, Yamanaka C, Ikeya M, Ohtaka O, Katsura T (2000) EPR study of a new electron center in synthetic stishovite, a high pressure polymorph of silica. Appl Magn Reson 18:559–564

    Article  Google Scholar 

  • Walsby CJ, Lees NS, Claridge RFC, Weil JA (2003) The magnetic properties of oxygen-hole aluminum centers in crystalline SiO2. VI. A stable AlO4/Li centre. Can J Phys 81:583–598

    Article  Google Scholar 

  • Wright PM, Weil JA, Buch T, Anderson JH (1963) Titanium colour centers in rose quartz. Nature 197:246–248

    Article  Google Scholar 

  • Yamaga M, Yosida T, Hara S, Kodama N (1994) Optical and electron spin resonance spectroscopy of Ti3+ and Ti4+ in Al2O3. J Appl Phys 75:1111–1117

    Article  Google Scholar 

  • Yamanaka T, Fukuda T, Tsuchiya J (2002) Bonding character of SiO2 stishovite under high pressures up to 30 GPa. Phys Chem Minerals 29:633–641

    Article  Google Scholar 

  • Yang S, Halliburton LE (2010) Fluorine donors and Ti3+ ions in TiO2 crystals. Phys Rev B 81:035204

    Article  Google Scholar 

  • Zwingel D (1976a) The structure of trapped hole centers in Al-doped TiO2. Solid State Commun 20:397–400

    Article  Google Scholar 

  • Zwingel D (1976b) The electronic structure of trapped hole centres in SnO2. Phys Status Solidi (b) 77:171–180

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. M. Matsui and two anonymous reviewers for constructive comments and helpful suggestions, NSERC for financial support of this study and Ms. Jinru Lin for preparation of Fig. 1. All DFT calculations have been made by the use of Westgrid computing resources, which are funded in part by the Canadian Foundation for Innovation, Alberta Innovation and Science, BC Advanced Education and the participating research institutions. Westgrid equipment is provided by IBM, Hewlett Packard and SGI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanming Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Y., Mao, M., Li, Z. et al. Single-crystal EPR study of three radiation-induced defects (Al–O2 3−, Ti3+ and W5+) in stishovite. Phys Chem Minerals 39, 627–637 (2012). https://doi.org/10.1007/s00269-012-0517-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-012-0517-9

Keywords

Navigation