Skip to main content

Advertisement

Log in

Using Data From Seed-Dispersal Modelling to Manage Invasive Tree Species: The Example of Fraxinus pennsylvanica Marshall in Europe

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Management strategies to control invasive species need information about dispersal distances to predict establishment potential. Fraxinus pennsylvanica is a North American anemochorous tree species that is invasive in many Central European floodplain forests. To predict seed-dispersal potential, the stochastic model WaldStat was used, which enables different options for directionality (isotropic and anisotropic) to be simulated. In this article, we (1) show empirical results of fructification and seed dispersal for this tree species. The model predicts approximately 250,000 seeds for one F. pennsylvanica tree. These results were used to (2) calculate species-specific dispersal distances and effects of wind direction. To consider the influence of wind on dispersal potential of the tree species, long-distance dispersal (LDD [95th percentile dispersal distance]) was calculated. Mean dispersal distances varied between 47 and 66 m. LDD values modelled along the main wind direction ranged from 60 to 150 m. Seed production, dispersal distance, and direction data were (3) incorporated into theoretical management scenarios for forest ecosystems. Finally (4), we discuss management options and the practical relevance of model scenarios in relation to the accuracy of spatial dispersal predictions. Further analyses should be focused on possible, well-adapted management concepts at stand level that could restrict the potential spread of invasive species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aradóttir AL, Robertson A, Moore E (1997) Circular statistical analysis of birch colonization and the directional growth response of birch and black cottonwood in south Iceland. Agric For Meteorol 84:179–186

    Article  Google Scholar 

  • Batschelet E (1981) Institute of Mathematics University of Zurich– Switzerland Circular Statistics in Biology. Academic, San Francisco

    Google Scholar 

  • Beichelt FE, Montgomery DC (2003) Teubner-Taschenbuch der Stochastik: Wahrscheinlichkeitstheorie, Stochastische Prozesse, Mathematische Statistik. B.G. Teubner Verlag/GWV Fachverlag GmbH, Wiesbaden, Germany

  • Bullock JM, Clarke RT (2000) Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia 124:506–521

    Article  Google Scholar 

  • Cancino JOC (2003) Analyse und praktische Umsetzung unterschiedlicher Methoden des Randomized Branch Sampling. Dissertation, Georg-August-Universität Göttingen, Göttingen, Germany

  • Cannas SA, Marco DE, Páez A (2003) Modelling biological invasions: species traits, species interactions, and habitat heterogeneity. Math Biosci 183:93–110

    Article  Google Scholar 

  • Clark JS, Ji Y (1995) Fecundity and dispersal in plant populations: implications for structure and diversity. Am Nat 146:72–111

    Article  Google Scholar 

  • Clausen KE (1979) Mini-monograph on Fraxinus pennsylvanica Marsh. In: FAO Session 6. Technical consultation on fast-growing plantation broadleaved trees for Mediterranean and temperate zones. Lisbon, Portugal, October 16–20, 1979, pp 209–226

  • Greene DF, Canham CD, Coates KD, Lepage PT (2004) An evaluation of alternative dispersal functions for trees. J Ecol 92:758–766

    Article  Google Scholar 

  • Grisez TJ (1975) Flowering and seed production in seven hardwood species. United States Forest Service Research Paper NE-315

  • Gucker CL (2005) Fraxinus pennsylvanica. In: Fire effects information system. United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). http://www.fs.fed.us/database/feis/. Accessed 13 Aug 2013

  • Hagemeier M (2002) Funktionale Kronenarchitektur mitteleuropäischer Baumarten am Beispiel von Hängebirke, Waldkiefer, Traubeneiche, Hainbuche, Winterlinde und Rotbuche. Dissertationes Botanicae 361, J. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung, Berlin–Stuttgart, Germany

  • Harmer R (1995) Natural regeneration of broadleaved trees in Britain: III. Germination and establishment. Forestry 68:1–9

    Article  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic, London

    Google Scholar 

  • Hemery GE, Savill PS, Pryor SN (2005) Application to the crown diameter-stem diameter relationship for different species of broadleaved trees. For Ecol Manage 215:285–294

    Article  Google Scholar 

  • Herrmann I, Herrmann T, Wagner S (2011) Improvements in anisotropic models of single tree effects in Cartesian coordinates. Ecol Model 222:1333–1336

    Article  Google Scholar 

  • Higgins SI, Richardson DM, Cowling RM (1996) Modelling invasive plant spread: the role of plant-environment interactions and model structure. Ecology 77:2043–2054

    Article  Google Scholar 

  • Johnson WC (1988) Estimating dispersibility of Acer, Fraxinus and Tilia in fragmented landscapes from patterns of seedlings establishment. Landsc Ecol 1:175–187

    Article  Google Scholar 

  • Jørgensen SE (ed) (2009) Ecosystem ecology. Elsevier, Amsterdam

    Google Scholar 

  • Kelty MJ, Larson BC, Oliver CD (1992) The ecology and silviculture of mixed-species forests. Forestry sciences 40. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Kennedy HE Jr (1990) Fraxinus pennsylvanica Marsh., green ash. In: Burns RM, Honkala BH (technical coordinators) Silvics of North America. Volume 2. Hardwoods. Agricultural Handbook 654. Washington, DC: United States Department of Agriculture Forest Service, 348B354

  • Kremer D, Čavlović J (2005) Distribution of introduced North American ash species and their role in lowland forest management in Croatia. J For 103:309–313

    Google Scholar 

  • Kremer D, Pernar R, Ančić M (2006) Distribution of North American ash species in the Drava River basin and Danube basin (Croatia). Acta Bot Croat 65:57–66

    Google Scholar 

  • Küßner R (2003) Mortality patterns of Quercus, Tilia, and Fraxinus germinants in a floodplain forest on the river Elbe, Germany. For Ecol Manage 173:37–48

    Article  Google Scholar 

  • Lischke H, Löffler TJ (2006) Intra-specific density dependence is required to maintain species diversity in spatio-temporal forest simulations with reproduction. Ecol Model 198:341–361

    Article  Google Scholar 

  • Malanson GP, Amstrong MP (1996) Dispersal probability and forest diversity in a fragmented landscape. Ecol Model 87:91–102

    Article  Google Scholar 

  • Marigo G, Peltier JP, Girel J, Pautou G (2000) Success in the demographic expansion of Fraxinus excelsior L. Trees 15:1–13

    Google Scholar 

  • McEuen AB, Curran LM (2004) Seed dispersal and recruitment limitation across spatial scales in temperate forest fragments. Ecology 85:507–518

    Article  Google Scholar 

  • Mize CW, Brandle JR, Schoneberger MM, Bentrup G (2008) Ecological development and function of shelterbelts in temperate North America. United States Department of Agriculture Forest Service/UNL Faculty Publications, Paper 40

  • Murray DR (ed) (1986) Seed dispersal. Biology Department, The University of Wollongong, New South Wales. Academic, San Diego, CA

  • Nakashizuka T (2001) Species coexistence in temperate, mixed deciduous forests. Trends Ecol Evol 16:205–210

    Article  Google Scholar 

  • Näther W, Wälder K (2003) Experimental design and statistical inference for cluster point processes—with applications to the fruit dispersion of anemochorous forest trees. Biom J 45:1006–1022

    Article  Google Scholar 

  • Pairon M, Jonard M, Jacquemart AL (2006) Modelling seed dispersal of black cherry, an invasive forest tree: How microsatellites may help? Can J For Res 36:1385–1394

    Article  Google Scholar 

  • Petit RJ (2004) Biological invasions at the gene level. Divers Distrib 10:159–165

    Article  Google Scholar 

  • Popadyuk RV, Smirnova OV, Evstigneev OI, Yanitskaya TO, Chumatchenko SI, Zaugolnova LB, et al. (1995) Current state of broad-leaved forest in Russia, Belorussia, Ukraine: Historical development, biodiversity, structure and dynamic. Pushchino Research Center, Russian Academy of Sciences, Puschino, Russia

  • Prasad AM, Iverson LR, Matthews S, Peters M (2007–ongoing) A climate change atlas for 134 forest tree species of the eastern United States [database]. Northern Research Station, United States Department of Agriculture Forest Service, Delaware, OH. http://www.nrs.fs.fed.us/atlas/tree. Accessed 15 June 2012

  • Pyšek P, Sádlo J, Mandák B (2002) Catalogue of alien plants of the Czech Republic. Preslia 74:97–186

    Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000) Plant invasions—the role of mutualisms. Biol Rev 75:65–93

    Article  CAS  Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  Google Scholar 

  • Schmiedel D (2010) Fraxinus pennsylvanica Marsh. in den Auenwäldern der Mittelelbe. Invasionsbiologie und ökologisches Verhalten im naturschutzfachlichen Kontext. Berliner Beiträge zur Ökologie Band 6. Weißensee Verlag, Berlin, Germany

  • Schmiedel D, Tackenberg O (2013) Hydrochory and water induced germination enhance invasion of Fraxinus pennsylvanica. For Ecol Manage 304:437–443

    Google Scholar 

  • Smit C, Gusbertia M, Müller-Schärer H (2006) Safe for saplings; safe for seeds? For Ecol Manage 237:471–477

    Article  Google Scholar 

  • Soons MB, Nathan R, Katul GG (2004) Human effects on long-distance wind dispersal and colonization by grassland plants. Ecology 85:3069–3079

    Article  Google Scholar 

  • Stoyan D, Wagner S (2001) Estimating the fruit dispersion of anemochorous forest trees. Ecol Model 145:35–47

    Article  Google Scholar 

  • Sutherland EK, Hale BJ, Hix DM (2000) Defining species guilds in the central hardwood forest, USA. Plant Ecol 147:1–19

    Article  Google Scholar 

  • Tal O (2007) Comparative flowering ecology of Fraxinus excelsior, Acer platanoides, Acer pseudoplatanus and Tilia cordata in the canopy of Leipzig’s floodplain forest. Dissertation, Universität Leipzig

  • Taylor SM (1972) Ecological and genetic isolation of Fraxinus americana and Fraxinus pennsylvanica. Dissertation, The University of Michigan, Ann Arbor, MI

  • Trakhtenbrot A, Nathan R, Perry G, Richardson DM (2005) The importance of long-distance dispersal in biodiversity conservation. Divers Distrib 11:173–181

    Article  Google Scholar 

  • Wagner S, Wälder K, Ribbens E, Zeibig A (2004) Directionality in fruit dispersal models for anemochorous forest trees. Ecol Model 179:487–498

    Article  Google Scholar 

  • Wälder K, Näther W, Wagner S (2009) Improving inverse model fitting in trees—anisotropy, multiplicative effects, and Bayes estimation. Ecol Model 220:1044–1053

    Article  Google Scholar 

  • Willdenow CL (1796) Berlinische Baumzucht oder Beschreibung der in den Gärten um Berlin, im Freien ausdauernden Bäume und Sträucher, für Gartenliebhaber und Freunde der Botanik. Nauck, Berlin, Germany

Download references

Acknowledgments

This study was supported and funded by the German Federal Environmental Foundation. Thanks to Konrad Wälder from TU-Bergakademie Freiberg for making WaldStat available. We thank three anonymous reviewers who gave valuable and appreciated comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doreen Schmiedel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmiedel, D., Huth, F. & Wagner, S. Using Data From Seed-Dispersal Modelling to Manage Invasive Tree Species: The Example of Fraxinus pennsylvanica Marshall in Europe. Environmental Management 52, 851–860 (2013). https://doi.org/10.1007/s00267-013-0135-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-013-0135-4

Keywords

Navigation