Skip to main content
Log in

Changes in bone mineral density of the proximal tibia after uncemented total knee arthroplasty. A prospective randomized study

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Regenerex is a novel porous titanium construct with a three-dimensional porous structure and biomechanical characteristics close to that of normal trabecular bone. The aim of this study was to evaluate the adaptive bone remodeling of the proximal tibia after uncemented total knee arthroplasty (TKA) using a tibial tray with this novel coating compared to a well-proven standard porous coated (PPS) tibial tray.

Materials

Sixty patients scheduled for TKA were randomized to receive either a Regenerex (n = 31) or a PPS tibial component (n = 29). Changes in bone mineral density (BMD) of the proximal tibia were measured at three, six, 12 and 24 months by dual-energy X-ray absorptiometry (DEXA).

Results

In the lateral region (ROI 3), a significant increase in BMD was seen in both groups at three, six, and 12 months after surgery. The relative increase at 12 months was 8.1 % (P = 0.007) for the PPS group and 6.5 % (P = 0.002) for the Regenerex group. Positive values were retained at 24 months in both groups. At 24 months BMD in the distal region below the central stem (ROI 1) had decreased in the PPS group by 3.4 % (P = 0.005) and in the Regenerex group by 2.4 % (P = 0.17). In the medial region (ROI 2) BMD remained unchanged at all follow-up evaluations in both groups. There were no significant differences between the two groups (P = 0.45) in any ROI at any follow-up evaluation.

Conclusion

The significant increase in BMD of the lateral proximal tibia plateau with very limited changes medially and distally seen in both implants suggests that the novel porous titanium construct Regenerex and the PPS implant have a pronounced beneficial effect with regard to maintaining periprosthetic BMD in all regions of interest investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bohr HH, Lund B (1987) Bone mineral density of the proximal tibia following uncemented arthroplasty. J Arthroplasty 2(4):309–312

    Article  CAS  PubMed  Google Scholar 

  2. Soininvaara TA, Miettinen HJ, Jurvelin JS, Suomalainen OT, Alhava EM, Kröger HP (2004) Periprosthetic tibial bone mineral density changes after total knee arthroplasty: one-year follow-up study of 69 patients. Acta Orthop Scand 75(5):600–605

    Article  PubMed  Google Scholar 

  3. Levitz CL, Lotke PA, Karp JS (1995) Long-term changes in bone mineral density following total knee replacement. Clin Orthop Relat Res 321:68–72

    PubMed  Google Scholar 

  4. Petersen MM, Nielsen PT, Lebech A, Toksvig-Larsen S, Lund B (1999) Preoperative bone mineral density of the proximal tibia and migration of the tibial component after uncemented total knee arthroplasty. J Arthroplasty 14(1):77–81

    Article  CAS  PubMed  Google Scholar 

  5. Petersen MM, Nielsen PT, Lauritzen JB, Lund B (1995) Changes in bone mineral density of the proximal tibia after uncemented total knee arthroplasty. A 3-year follow-up of 25 knees. Acta Orthop Scand 66(6):513–516

    Article  CAS  PubMed  Google Scholar 

  6. Donaldson CL, Hulley SB, Vogel JM, Hattner RS, Bayers JH, McMillan DE (1970) Effect of prolonged bed rest on bone mineral. Metabolism 19(12):1071–1084

    Article  CAS  PubMed  Google Scholar 

  7. Krolner B, Toft B (1983) Vertebral bone loss: an unheeded side effect of therapeutic bed rest. Clin Sci (Lond) 64(5):537–540

    Article  CAS  Google Scholar 

  8. Lanyon LE (1983) Functional strain as a determinant for bone remodeling. Calcif Tissue Int 36(Suppl 1):S56–S61

    Google Scholar 

  9. Järvinen M, Kannus P (1997) Injury of an extremity as a risk factor for the development of osteoporosis. J Bone Joint Surg Am 79(2):263–276

    PubMed  Google Scholar 

  10. Li MG, Nilsson KG (2000) The effect of the preoperative bone quality on the fixation of the tibial component in total knee arthroplasty. J Arthroplasty 15(6):744–753

    Article  CAS  PubMed  Google Scholar 

  11. Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC (1980) The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin Orthop Relat Res 150:263–270

    PubMed  Google Scholar 

  12. Cameron HU, Pilliar RM, MacNab I (1973) The effect of movement on the bonding of porous metal to bone. J Biomed Mater Res 7(4):301–311

    Article  CAS  PubMed  Google Scholar 

  13. Dabrowski B, Swieszkowski W, Godlinski D, Kurzydlowski KJ (2010) Highly porous titanium scaffolds for orthopaedic applications. J Biomed Mater Res B Appl Biomater 95(1):53–61

    Article  PubMed  Google Scholar 

  14. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    Article  CAS  PubMed  Google Scholar 

  15. Søballe K, Hansen ES, B-Rasmussen H, Jørgensen PH, Bunger C (1992) Tissue ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions. J Orthop Res 10(2):285–299

    Article  PubMed  Google Scholar 

  16. Andersson SM, Nilsson BE (1979) Changes in bone mineral content following tibia shaft fractures. Clin Orthop Relat Res 144:226–229

    PubMed  Google Scholar 

  17. Insall JN, Dorr LD, Scott RD, Scott WN (1989) Rationale of the Knee Society clinical rating system. Clin Orthop Relat Res 248:13–14

    PubMed  Google Scholar 

  18. Petersen MM, Gehrchen PM, Ostgaard SE, Nielsen PK, Lund B (2005) Effect of hydroxyapatite-coated tibial components on changes in bone mineral density of the proximal tibia after uncemented total knee arthroplasty: a prospective randomized study using dual-energy X-ray absorptiometry. J Arthroplasty 20(4):516–520

    Article  PubMed  Google Scholar 

  19. Li MG, Nilsson KG (2000) Changes in bone mineral density at the proximal tibia after total knee arthroplasty: a 2-year follow-up of 28 knees using dual energy X-ray absorptiometry. J Orthop Res 18(1):40–47

    Article  CAS  PubMed  Google Scholar 

  20. Hvid I, Bentzen SM, Jørgensen J (1988) Remodeling of the tibial plateau after knee replacement. CT bone densitometry. Acta Orthop Scand 59(5):567–573

    Article  CAS  PubMed  Google Scholar 

  21. Saari T, Uvehammer J, Carlsson L, Regnér L, Kärrholm J (2007) Joint area constraint had no influence on bone loss in proximal tibia 5 years after total knee replacement. J Orthop Res 25(6):798–803

    Article  PubMed  Google Scholar 

  22. Regnér LR, Carlsson LV, Kärrholm JN, Hansson TH, Herberts PG, Swanpalmer J (1999) Bone mineral and migratory patterns in uncemented total knee arthroplasties: a randomized 5-year follow-up study of 38 knees. Acta Orthop Scand 70(6):603–608

    Article  PubMed  Google Scholar 

  23. Li MG, Nilsson KG (2001) No relationship between postoperative changes in bone density at the proximal tibia and the migration of the tibial component 2 years after total knee arthroplasty. J Arthroplasty 16(7):893–900

    Article  CAS  PubMed  Google Scholar 

  24. Henricson A, Linder L, Nilsson KG (2008) A trabecular metal tibial component in total knee replacement in patients younger than 60 years: a two-year radiostereophotogrammetric analysis. J Bone Joint Surg (Br) 90(12):1585–1593

    Article  CAS  Google Scholar 

  25. Onsten I, Nordqvist A, Carlsson AS, Besjakov J, Shott S (1998) Hydroxyapatite augmentation of the porous coating improves fixation of tibial components. A randomised RSA study in 116 patients. J Bone Joint Surg (Br) 80(3):417–425

    Article  CAS  Google Scholar 

  26. Ryd L (1986) Micromotion in knee arthroplasty. A roentgen stereophotogrammetric analysis of tibial component fixation. Acta Orthop Scand Suppl 220:1–80

    CAS  PubMed  Google Scholar 

  27. Ryd L, Albrektsson BE, Carlsson L, Dansgård F, Herberts P, Lindstrand A, Regnér L, Toksvig-Larsen S (1995) Roentgen stereophotogrammetric analysis as a predictor of mechanical loosening of knee prostheses. J Bone Joint Surg (Br) 77:377

    CAS  Google Scholar 

  28. Ritter MA, Meneghini RM (2010) Twenty-year survivorship of cementless anatomic graduated component total knee arthroplasty. J Arthroplasty 77(3):377–383

    Google Scholar 

  29. Schroder HM, Berthelsen A, Hassani G, Hansen EB, Solgaard S (2001) Cementless porous-coated total knee arthroplasty: 10-year results in a consecutive series. J Arthroplasty 25(4):507–513

    Google Scholar 

  30. Eriksen J, Christensen J, Solgaard S, Schrøder H (2009) The cementless AGC 2000 knee prosthesis: 20-year results in a consecutive series. Acta Orthop Belg 75(2):225–233

    PubMed  Google Scholar 

  31. Meding JB, Galley MR, Ritter MA (2010) High survival of uncemented proximally porous-coated titanium alloy femoral stems in osteoporotic bone. Clin Orthop Relat Res 468:441–447

    Article  PubMed Central  PubMed  Google Scholar 

  32. Minoda Y, Kobayashi A, Iwaki H, Ikebuchi M, Inori F, Takaoka K (2010) Comparison of bone mineral density between porous tantalum and cemented tibial total knee arthroplasty components. J Bone Joint Surg Am 92(3):700–706

    Article  PubMed  Google Scholar 

  33. Minoda Y, Kobayashi A, Ikebuchi M, Iwaki H, Inori F, Nakamura H (2013) Porous tantalum tibial component prevents periprosthetic loss of bone mineral density after total knee arthroplasty for five years-a matched cohort study. J Arthroplasty 28:1760

    Article  PubMed  Google Scholar 

  34. Sumner DR, Turner TM, Dawson D, Rosenberg AG, Urban RM, Galante JO (1994) Effect of pegs and screws on bone ingrowth in cementless total knee arthroplasty. Clin Orthop Relat Res 309:150–155

    PubMed  Google Scholar 

  35. Nilsson KG, Henricson A, Norgren B, Dalén T (2006) Uncemented HA-coated implant is the optimum fixation for TKA in the young patient. Clin Orthop Relat Res 448:129139

    Article  Google Scholar 

Download references

Acknowledgments

Financial support was received from Biomet (Warsaw, IA, USA), the Maggie og Svend ritzches Memorial Fund, and from Hillerød Hospital (research grant).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaj Winther.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winther, N., Jensen, C., Petersen, M. et al. Changes in bone mineral density of the proximal tibia after uncemented total knee arthroplasty. A prospective randomized study. International Orthopaedics (SICOT) 40, 285–294 (2016). https://doi.org/10.1007/s00264-015-2852-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-2852-1

Keywords

Navigation