Skip to main content
Log in

Minimum joint space width (mJSW) of patellofemoral joint on standing “skyline” radiographs: test-retest reproducibility and comparison with quantitative magnetic resonance imaging (qMRI)

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To assess the intraobserver, interobserver, and test-retest reproducibility of minimum joint space width (mJSW) measurement of medial and lateral patellofemoral joints on standing “skyline” radiographs and to compare the mJSW of the patellofemoral joint to the mean cartilage thickness calculated by quantitative magnetic resonance imaging (qMRI).

Materials and methods

A couple of standing “skyline” radiographs of the patellofemoral joints and MRI of 55 knees of 28 volunteers (18 females, ten males, mean age, 48.5 ± 16.2 years) were obtained on the same day. The mJSW of the patellofemoral joint was manually measured and Kellgren and Lawrence grade (KLG) was independently assessed by two observers. The mJSW was compared to the mean cartilage thickness of patellofemoral joint calculated by qMRI.

Results

mJSW of the medial and lateral patellofemoral joint showed an excellent intraobserver agreement (interclass correlation (ICC) = 0.94 and 0.96), interobserver agreement (ICC = 0.90 and 0.95) and test-retest agreement (ICC = 0.92 and 0.96). The mJSW measured on radiographs was correlated to mean cartilage thickness calculated by qMRI (r = 0.71, p < 0.0001 for the medial PFJ and r = 0.81, p < 0.0001 for the lateral PFJ). However, there was a lack of concordance between radiographs and qMRI for extreme values of joint width and KLG. Radiographs yielded higher joint space measures than qMRI in knees with a normal joint space, while qMRI yielded higher joint space measures than radiographs in knees with joint space narrowing and higher KLG.

Conclusions

Standing “skyline” radiographs are a reproducible tool for measuring the mJSW of the patellofemoral joint. The mJSW of the patellofemoral joint on radiographs are correlated with, but not concordant with, qMRI measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Van Saase JL, van Romunde LK, Cats A, et al. Epidemiology of osteoarthritis: Zoetermeer survey. Comparison of radiological osteoarthritis in a Dutch population with that in 10 other populations. Ann Rheum Dis. 1989;48:271–80.

    Article  PubMed  Google Scholar 

  2. Felson DT, Naimark A, Anderson J, et al. The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum. 1987;30:914–8.

    Article  PubMed  CAS  Google Scholar 

  3. Ledingham J, Regan M, Jones A, et al. Radiographic patterns and associations of osteoarthritis of the knee in patients referred to hospital. Ann Rheum Dis. 1993;52:520–6.

    Article  PubMed  CAS  Google Scholar 

  4. McAlindon TE, Snow S, Cooper C, et al. Radiographic patterns of osteoarthritis of the knee joint in the community: the importance of the patellofemoral joint. Ann Rheum Dis. 1992;51:844–9.

    Article  PubMed  CAS  Google Scholar 

  5. Laskin RS, van Steijn M. Total knee replacement for patients with patellofemoral arthritis. Clin Orthop. 1999;367:89–95.

    PubMed  Google Scholar 

  6. Lanyon P, Jones A, Doherty M. Assessing progression of patellofemoral osteoarthritis: a comparison between two radiographic methods. Ann Rheum Dis. 1996;55:875–9.

    Article  PubMed  CAS  Google Scholar 

  7. Cicuttini FM, Baker J, Hart DJ, et al. Choosing the best method for radiological assessment of patellofemoral osteoarthritis. Ann Rheum Dis. 1996;55:134–6.

    Article  PubMed  CAS  Google Scholar 

  8. McDonnell SM, Bottomley NJ, Hollinghurst D, et al. Skyline patellofemoral radiographs can only exclude late-stage degenerative changes. Knee. 2011;18:21–3.

    Article  PubMed  CAS  Google Scholar 

  9. Boegård T, Rudling O, Petersson IF, et al. Joint-space width in the axial view of the patello-femoral joint. Definitions and comparison with MR imaging. Acta Radiol Stockh Swed 1987. 1998;39:24–31.

    Google Scholar 

  10. Jones AC, Ledingham J, McAlindon T, et al. Radiographic assessment of patellofemoral osteoarthritis. Ann Rheum Dis. 1993;52:655–8.

    Article  PubMed  CAS  Google Scholar 

  11. Laurin CA, Dussault R, Levesque HP. The tangential X-ray investigation of the patellofemoral joint: X-ray technique, diagnostic criteria and their interpretation. Clin Orthop Relat Res. 1979;144:16–26.

    PubMed  Google Scholar 

  12. Egund N. The axial view of the patello-femoral joint. Description of a new radiographic method for routine use. Acta Radiol Diagn (Stockh). 1986;27(1):101–4.

    CAS  Google Scholar 

  13. Malghem J, Maldague B, Lecouvet F, et al. Plain radiography of the knee: the articular surfaces. J Radiol. 2008;89:692–7. quiz708–710.

    Article  PubMed  CAS  Google Scholar 

  14. Toft J. Stress radiography of the patello-femoral joint. Ital J Orthop Traumatol. 1981;7:365–9.

    PubMed  CAS  Google Scholar 

  15. Turner GW, Burns CB. Erect position/tangential projection of the patellofemoral joint. Radiol Technol. 1982;54:11–4.

    PubMed  CAS  Google Scholar 

  16. Ahlbäck S. Osteoarthrosis of the knee. A radiographic investigation. Acta Radiol Diagn (Stockh). 1968; Suppl 277:7–72.

    Google Scholar 

  17. Merchant AC, Mercer RL, Jacobsen RH, et al. Roentgenographic analysis of patellofemoral congruence. J Bone Joint Surg Am. 1974;56(7):1391–6.

    PubMed  CAS  Google Scholar 

  18. Dupuy DE, Spillane RM, Rosol MS, et al. Quantification of articular cartilage in the knee with three-dimensional MR imaging. Acad Radiol. 1996;3:919–24.

    Article  PubMed  CAS  Google Scholar 

  19. Eckstein F, Schnier M, Haubner M, et al. Accuracy of cartilage volume and thickness measurements with magnetic resonance imaging. Clin Orthop Relat Res. 1998;352:137–48.

    Google Scholar 

  20. Eckstein F, Westhoff J, Sittek H, et al. In vivo reproducibility of three-dimensional cartilage volume and thickness measurements with MR imaging. Ajr Am J Roentgenol. 1998;170(3):593–7.

    Article  PubMed  CAS  Google Scholar 

  21. Tamez-Peña JG, Farber J, González PC, et al. Unsupervised segmentation and quantification of anatomical knee features: data from the Osteoarthritis Initiative. IEEE Trans Biomed Eng. 2012;59:1177–86.

    Article  PubMed  Google Scholar 

  22. Schneider E, Nevitt M, McCulloch C, et al. Equivalence and precision of knee cartilage morphometry between different segmentation teams, cartilage regions, and MR acquisitions. Osteoarthr Cartil Oars Osteoarthr Res Soc. 2012;20:869–79.

    Article  CAS  Google Scholar 

  23. Wang Y, Wluka AE, Jones G, et al. Use magnetic resonance imaging to assess articular cartilage. Ther Adv Musculoskelet Dis. 2012;4:77–97.

    Article  PubMed  Google Scholar 

  24. Eckstein F, Gavazzeni A, Sittek H, et al. Determination of knee joint cartilage thickness using three-dimensional magnetic resonance chondro-crassometry (3D MR-CCM). Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med. 1996;36:256–65.

    Article  CAS  Google Scholar 

  25. Cohen ZA, McCarthy DM, Kwak SD, et al. Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements. Osteoarthr Cartil Oars Osteoarthr Res Soc. 1999;7:95–109.

    Article  CAS  Google Scholar 

  26. Graichen H, von Eisenhart-Rothe R, Vogl T, et al. Quantitative assessment of cartilage status in osteoarthritis by quantitative magnetic resonance imaging: technical validation for use in analysis of cartilage volume and further morphologic parameters. Arthritis Rheum. 2004;50:811–6.

    Article  PubMed  Google Scholar 

  27. Kladny B, Bail H, Swoboda B, et al. Cartilage thickness measurement in magnetic resonance imaging. Osteoarthr Cartil Oars Osteoarthr Res Soc. 1996;4:181–6.

    Article  CAS  Google Scholar 

  28. Marshall KW, Guthrie BT, Mikulis DJ. Quantitative cartilage imaging. Br J Rheumatol. 1995;34 Suppl 1:29–31.

    Article  PubMed  Google Scholar 

  29. Sittek H, Eckstein F, Gavazzeni A, et al. Assessment of normal patellar cartilage volume and thickness using MRI: an analysis of currently available pulse sequences. Skeletal Radiol. 1996;25:55–62.

    Article  PubMed  CAS  Google Scholar 

  30. Karvonen RL, Negendank WG, Fraser SM, et al. Articular cartilage defects of the knee: correlation between magnetic resonance imaging and gross pathology. Ann Rheum Dis. 1990;49:672–5.

    Article  PubMed  CAS  Google Scholar 

  31. Buckland-Wright C. Protocols for precise radio-anatomical positioning of the tibiofemoral and patellofemoral compartments of the knee. Osteoarthr Cartil Oars Osteoarthr Res Soc. 1995;3(A):71–80.

    Google Scholar 

  32. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16:494–502.

    Article  PubMed  CAS  Google Scholar 

  33. Altman RD, Hochberg M, Murphy Jr WA, et al. Atlas of individual radiographic features in osteoarthritis. Osteoarthr Cartil Oars Osteoarthr Res Soc. 1995;3(A):3–70.

    Google Scholar 

  34. Settegast J. Typische roentgenbilder von normalen menschen. Lehmanns med. Atlanten. 1921;5:211.

    Google Scholar 

  35. Hudelmaier M, Wirth W, Wehr B, et al. Femorotibial cartilage morphology: reproducibility of different metrics and femoral regions, and sensitivity to change in disease. Cells Tissues Organs. 2010;192:340–50.

    Article  PubMed  CAS  Google Scholar 

  36. Karvonen RL, Negendank WG, Teitge RA, et al. Factors affecting articular cartilage thickness in osteoarthritis and aging. J Rheumatol. 1994;21:1310–8.

    PubMed  CAS  Google Scholar 

  37. Mazzuca SA, Brandt KD, Buckwalter KA, et al. Field test of the reproducibility of the semiflexed metatarsophalangeal view in repeated radiographic examinations of subjects with osteoarthritis of the knee. Arthritis Rheum. 2002;46:109–13.

    Article  PubMed  Google Scholar 

  38. Peterfy C, Li J, Zaim S, et al. Comparison of fixed-flexion positioning with fluoroscopic semi-flexed positioning for quantifying radiographic joint-space width in the knee: test-retest reproducibility. Skeletal Radiol. 2003;32:128–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Simoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simoni, P., Jamali, S., Albert, A. et al. Minimum joint space width (mJSW) of patellofemoral joint on standing “skyline” radiographs: test-retest reproducibility and comparison with quantitative magnetic resonance imaging (qMRI). Skeletal Radiol 42, 1573–1582 (2013). https://doi.org/10.1007/s00256-013-1701-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-013-1701-9

Keywords

Navigation