Skip to main content
Log in

Cell-penetrating peptide and antibiotic combination therapy: a potential alternative to combat drug resistance in methicillin-resistant Staphylococcus aureus

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The diverse pattern of resistance by methicillin-resistant Staphylococcus aureus (MRSA) is the major obstacle in the treatment of its infections. The key reason of resistance is the poor membrane permeability of drug molecules. Over the last decade, cell-penetrating peptides (CPPs) have emerged as efficient drug delivery vehicles and have been exploited to improve the intracellular delivery of numerous therapeutic molecules in preclinical studies. Therefore, to overcome the drug resistance, we have investigated for the first time the effects of two CPPs (P3 and P8) in combination with four antibiotics (viz. oxacillin, erythromycin, norfloxacin, and vancomycin) against MRSA strains. We found that both CPPs internalized into the MRSA efficiently at very low concentration (<10 μM) which was non-toxic to bacteria as well as mammalian cells and showed no significant hemolytic activity. However, the combinations of CPPs (≤10 μM) and antibiotics showed high toxicity against MRSA as compared to antibiotics alone. The significant finding is that P3 and P8 could lower the MICs against oxacillin, norfloxacin, and vancomycin to susceptible levels (generally <1 μg/mL) for almost all five clinical isolates. Further, the bacterial cell death was confirmed by scanning electron microscopy as well as propidium iodide uptake assay. Simultaneously, time-kill kinetics revealed the increased uptake of antibiotics. In summary, CPPs assist to restore the effectiveness of antibiotics at much lower concentration, eliminate the antibiotic toxicity, and represent the CPP-antibiotic combination therapy as a potential novel weapon to combat MRSA infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alves ID, Carré M, Montero MP, Castano S, Lecomte S, Marquant R, Lecorché P, Burlina F, Schatz C, Sagan S, Chassaing G, Braguer D, Lavielle S (2014) A proapoptotic peptide conjugated to penetratin selectively inhibits tumor cell growth. Biochim Biophys Acta - Biomembr 1838:2087–2098. doi:10.1016/j.bbamem.2014.04.025

    Article  CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI). (2006) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically - 7th ed. Approved Standard, CLSI document M7-A7, Vol. 26. CLSI, Wayne, PA

  • Courvalin P (2006) Vancomycin resistance in Gram-positive cocci. Clin Infect Dis 42(Suppl 1):S25–S34

    Article  CAS  PubMed  Google Scholar 

  • Dartois V, Sanchez-Quesada J, Cabezas E, Chi E, Dubbelde C, Dunn C, Dunn C, Granja J, Gritzen C, Weinberger D, Ghadiri RM, Parr TR (2005) Systemic antibacterial activity of novel synthetic cyclic peptides. Antimicrob Agents Chemother 49:3302–3310. doi:10.1128/AAC.49.8.3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farkhani MS, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F (2014) Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides 57:78–94. doi:10.1016/j.peptides.2014.04.015

    Article  CAS  PubMed  Google Scholar 

  • Franciolli M, Bille J, Glauser MR, Moreillon P (1991) β-lactam resistance mechanisms of methicillin-resistant Staphylococcus aureus. J Infect Dis 163:514–522

    Article  CAS  PubMed  Google Scholar 

  • Gautam A, Sharma M, Vir P, Chaudhary K, Kapoor P, Kumar R, Nath SK, Raghava GPS (2015) Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides. Eur J Pharm Biopharm 89:93–106. doi:10.1016/j.ejpb.2014.11.020

    Article  CAS  PubMed  Google Scholar 

  • Gautam A, Singh H, Tyagi A, Chaudhary K, Kumar R, Kapoor P, Raghava GPS (2012) CPPsite: a curated database of cell penetrating peptides. Database 2012:1–7. doi:10.1093/database/bas015

    Article  Google Scholar 

  • Ghosh JK, Shaool D, Guillaud P, Ciceron L, Mazier D, Kustanovich I, Shai Y, Mor A (1997) Selective cytotoxicity of dermaseptin S3 toward intraerythrocytic plasmodium falciparum and the underlying molecular basis. J Biol Chem 272:31609–31616. doi:10.1074/jbc.272.50.31609

    Article  CAS  PubMed  Google Scholar 

  • Heiat M, Aghamollaei H, Moghaddam MM, Kooshki H (2014) Using CM11 peptide as a cell permeable agent for the improvement of conventional plasmid transformation methods in Escherichia coli and Bacillus subtilis. Minerva Biotechnologica 26:149–157

    Google Scholar 

  • Huang Y, Jiang Y, Wang H, Wang J, Shin MC, Byun Y, He H, Liang Y, Yang VC (2013) Curb challenges of the "trojan horse" approach: smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery. Adv Drug Deliv Rev 65:1299–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isnansetyo A, Kamei Y (2003) MC21-A, a bactericidal antibiotic produced by a new marine bacterium, Pseudoalteromonas phenolica sp. nov. O-BC30T, against methicillin-resistant Staphylococcus aureus. Antimicrob Agents and Chemother 47:480–488. doi:10.1128/AAC.42.2.480-488.2003

    Article  CAS  Google Scholar 

  • Kaatz G, Seo S (1993) Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus. Antimicrob Agents and Chemother 37:1086–1094. doi:10.1128/AAC.37.5.1086

    Article  CAS  Google Scholar 

  • Lehto T, Kurrikoff K, Langel U (2012) Cell-penetrating peptides for the delivery of nucleic acids. Expert Opin Drug Deliv 9:823–836. doi:10.1517/17425247.2012.689285

    Article  CAS  PubMed  Google Scholar 

  • Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman V, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459. doi:10.1038/nature14098

    Article  CAS  PubMed  Google Scholar 

  • Lowy FD (1998) Staphylococcus aureus infecions. N Engl J Med 339:520–532

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Xu J, Guan L, Hu T, Liu Q, Xiao J, Zhang Y (2014) Cell-penetrating peptides mediated protein cross-membrane delivery and its use in bacterial vector vaccine. Fish Shellfish Immunol 39:8–16. doi:10.1016/j.fsi.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  • McKay GA, Beaulieu S, Arhin FF, Belley A, Sarmiento I, Parr TMG (2009) Time-kill kinetics of oritavancin and comparator agents against Streptococcus pyogenes. J Antimicrob Chemother 63:1191–1199. doi:10.1093/jac/dkp126

    Article  CAS  PubMed  Google Scholar 

  • Nagappa AN, Kole PL, Pandi PV, Patil RT, Zeeyauddin K, Shanmukha I (2004) Transport studies through liquid membranes of ciprofloxacin and norfloxacin. Indian J Biochem Biophys 41:48–52

    CAS  PubMed  Google Scholar 

  • Nobles CL, Green SI, Maresso AW (2013) A product of heme catabolism modulates bacterial function and survival. PLoS Pathog 9(7):e1003507. doi:10.1371/journal.ppat.1003507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuding S, Frasch T, Schaller M, Stange EF, Zabel LT (2014) Synergistic effects of antimicrobial peptides and antibiotics against Clostridium difficile. Antimicrob Agents Chemother 58:5719–5725. doi:10.1128/AAC.02542-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh D, Sun J, Nasrolahi Shirazi A, LaPlante KL, Rowley DC, Parang K (2014) Antibacterial activities of amphiphilic cyclic cell-penetrating peptides against multidrug resistant pathogens. Mol Pharm 11:3528–3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40. doi:10.1038/nrd2201

    Article  CAS  PubMed  Google Scholar 

  • Piątkowska E, Piątkowski J, Przondo-Mordarska A (2012) The strongest resistance of Staphylococcus aureus to erythromycin is caused by decreasing uptake of the antibiotic into the cells. Cell Mol Biol Lett 17:633–645. doi:10.2478/s11658-012-0034-3

    PubMed  Google Scholar 

  • Pujals S, Fernandez-Carneado J, Lopez-Iglesias C, Kogan MJ, Giralt E (2006) Mechanistic aspects of CPP-mediated intracellular drug delivery: relevance of CPP self-assembly. Biochim Biophys Acta - Biomembr 1758:264–279. doi:10.1016/j.bbamem.2006.01.006

    Article  CAS  Google Scholar 

  • Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating peptides: a reevaluation of the mechanism of cellular uptake. J Biol Chem 278:585–590. doi:10.1074/jbc.M209548200

    Article  CAS  PubMed  Google Scholar 

  • Roy SK, Kumari N, Pahwa S, Agrahari UC, Bhutani KK, Jachak SM, Nandanwar H (2013) NorA efflux pump inhibitory activity of coumarins from mesua ferrea. Fitoterapia 90:140–150. doi:10.1016/j.fitote.2013.07.015

    Article  CAS  PubMed  Google Scholar 

  • Snyder EL, Dowdy SF (2004) Cell penetrating peptides in drug delivery. Pharm Res 21:389–393

    Article  CAS  PubMed  Google Scholar 

  • Sparr C, Purkayastha N, Kolesinska B, Gengenbacher M, Amulic B, Matuschewski K, Seebach D, Kamena F (2013) Improved efficacy of fosmidomycin against plasmodium and mycobacterium species by combination with the cell-penetrating peptide octaarginine. Antimicrob Agents Chemother 57:4689–4698. doi:10.1128/AAC.00427-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaara M, Nurminen M (1999) Outer membrane permeability barrier in Escherichia coli mutants that are defective in the late acyltransferases of lipid a biosynthesis. Antimicrob Agents Chemother 43:1459–1462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vasconcelos L, Parn K, Langel U (2013) Therapeutic potential of cell-penetrating peptides. Ther Deliv 4:573–591. doi:10.4155/tde.13.22

    Article  CAS  PubMed  Google Scholar 

  • Vives E, Schmidt J, Pelegrin A (2008) Cell-penetrating and cell-targeting peptides in drug delivery. Biochim biophys acta 1786:126–138. doi:10.1016/j.bbcan.2008.03.001

    CAS  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organism. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors HN and GPSR acknowledge the CSIR for Network Project (BSC121) grant to support this study. We are also thankful to Prof. Varsha Gupta, Professor in Clinical Microbiology, Govt. Medical College & Hospital, Sector 32, Chandigarh for providing clinical strains for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gajendra Pal Singh Raghava or Hemraj Nandanwar.

Ethics declarations

This article does not contain any studies with animals performed by any of the authors. This study was approved by the Institutional Biosafety Commitee.

Funding

This study was funded by Council of Scientific and Industrial Research (BSC0121 and BSC0121H).

Conflict of interest

There is no conflict of interest

Additional information

Harmandeep Kaur Randhawa and Ankur Gautam equally contributed to this paper.

Electronic supplementary material

Table S1

(PDF 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Randhawa, H.K., Gautam, A., Sharma, M. et al. Cell-penetrating peptide and antibiotic combination therapy: a potential alternative to combat drug resistance in methicillin-resistant Staphylococcus aureus . Appl Microbiol Biotechnol 100, 4073–4083 (2016). https://doi.org/10.1007/s00253-016-7329-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7329-7

Keywords

Navigation