Skip to main content
Log in

Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nikkomycins and gougerotin are peptidyl nucleoside antibiotics with broad biological activities. The nikkomycin biosynthetic gene cluster comprises one pathway-specific regulatory gene (sanG) and 21 structural genes, whereas the gene cluster for gougerotin biosynthesis includes one putative regulatory gene, one major facilitator superfamily transporter gene, and 13 structural genes. In the present study, we introduced sanG driven by six different promoters into Streptomyces ansochromogenes TH322. Nikkomycin production was increased significantly with the highest increase in engineered strain harboring hrdB promoter-driven sanG. In the meantime, we replaced the native promoter of key structural genes in the gougerotin (gou) gene cluster with the hrdB promoters. The heterologous producer Streptomyces coelicolor M1146 harboring the modified gene cluster produced gougerotin up to 10-fold more than strains carrying the unmodified cluster. Therefore, genetic manipulations of genes involved in antibiotics biosynthesis with the constitutive hrdB promoter present a robust, easy-to-use system generally useful for the improvement of antibiotics production in Streptomyces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bibb MJ, Janssen GR, Ward JM (1985) Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 38:215–226

    Article  CAS  Google Scholar 

  • Clark JM, Gunther JK (1963) Gougerotin, a specific inhibitor of protein synthesis. Biochim Biophys Acta 76:636–638

    Article  CAS  Google Scholar 

  • Dangel V, Westrich L, Smith M, Heide L, Gust B (2010) Use of an inducible promoter for antibiotic production in a heterologous host. Appl Microbiol Biotechnol 87:261–269

    Article  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  CAS  Google Scholar 

  • Denis F, Brzezinski R (1991) An improved aminoglycoside resistance gene cassette for use in Gram-negative bacteria and Streptomyces. FEMS Microbiol Lett 81:261–264

    Article  CAS  Google Scholar 

  • Fiedler HP (1984) Screening for new microbial products by high-performance liquid chromatography using a photodiode array detector. J Chromatogr 316:487–494

    Article  CAS  Google Scholar 

  • Fiedler HP, Kurth R, Langhärig J, Delzer J, Zähner H (1982) Nikkomycins: microbial inhibitors of chitin synthase. J Chem Technol Biotechnol 32:271–280

    Article  CAS  Google Scholar 

  • Gomez-Escribano JP, Bibb MJ (2011) Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microb Biotechnol 4:207–215

    Article  CAS  Google Scholar 

  • Guo J, Zhao J, Li L, Chen Z, Wen Y, Li J (2010) The pathway-specific regulator AveR from Streptomyces avermitilis positively regulates avermectin production while it negatively affects oligomycin biosynthesis. Mol Genet Genomics 283:123–133

    Article  CAS  Google Scholar 

  • Haneishi T, Arai M, Kitano N, Yamamoto S (1974) Aspiculamycin, a new cytosine nucleoside antibiotic. 3. Biological activities, in vitro and in vivo. J Antibiot 27:339–342

    Article  CAS  Google Scholar 

  • Herai S, Hashimoto Y, Higashibata H, Maseda H, Ikeda H, Omura S, Kobayashi M (2004) Hyper-inducible expression system for Streptomycetes. Proc Natl Acad Sci U S A 101:14031–14035

    Article  CAS  Google Scholar 

  • Jung WS, Jeong SJ, Park SR, Choi CY, Park BC, Park JW, Yoon YJ (2008) Enhanced heterologous production of desosaminyl macrolides and their hydroxylated derivatives by overexpression of the pikD regulatory gene in Streptomyces venezuelae. Appl Environ Microbiol 74:1972–1979

    Article  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Kondo F, Kitano N, Domon H, Arai M, Haneishi T (1974) Aspiculamycin, a new cytosine nucleoside antibiotic. IV. Antimycoplasma activity of aspiculamycin in vitro and in vivo. J Antibiot 27:529–534

    Article  CAS  Google Scholar 

  • Labes G, Bibb M, Wohlleben W (1997) Isolation and characterization of a strong promoter element from the Streptomyces ghanaensis phage I19 using the gentamicin resistance gene (aacC1) of Tn 1696 as reporter. Microbiology 143:1503–1512

    Article  CAS  Google Scholar 

  • Lacal JC, Vázquez D, Fernandez-Sousa JM, Carrasco L (1980) Antibiotics that specifically block translation in virus-infected cells. J Antibiot 33:441–446

    Article  CAS  Google Scholar 

  • Li Y, Ling H, Li W, Tan H (2005) Improvement of nikkomycin production by enhanced copy of sanU and sanV in Streptomyces ansochromogenes and characterization of a novel glutamate mutase encoded by sanU and sanV. Metab Eng 7:165–173

    Article  Google Scholar 

  • Li R, Xie Z, Tian Y, Yang H, Chen W, You D, Liu G, Deng Z, Tan H (2009) polR, a pathway-specific transcriptional regulatory gene, positively controls polyoxin biosynthesis in Streptomyces cacaoi subsp. asoensis. Microbiology 155:1819–1831

    Article  CAS  Google Scholar 

  • Liao G, Li J, Li L, Yang H, Tian Y, Tan H (2009) Selectively improving nikkomycin Z production by blocking the imidazolone biosynthetic pathway of nikkomycin X and uracil feeding in Streptomyces ansochromogenes. Microb Cell Fact 8:61

    Article  Google Scholar 

  • Liao G, Li J, Li L, Yang H, Tian Y, Tan H (2010) Cloning, reassembling and integration of the entire nikkomycin biosynthetic gene cluster into Streptomyces ansochromogenes lead to an improved nikkomycin production. Microb Cell Fact 9:6

    Article  Google Scholar 

  • Liu G, Tian Y, Yang H, Tan H (2005) A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes that also influences colony development. Mol Microbiol 55:1855–1866

    Article  CAS  Google Scholar 

  • Medema MH, Alam MT, Breitling R, Takano E (2011) The future of industrial antibiotic production: from random mutagenesis to synthetic biology. Bioeng Bugs 2:230–233

    Article  Google Scholar 

  • Niu G, Li L, Wei J, Tan H (2013) Cloning, heterologous expression, and characterization of the gene cluster required for gougerotin biosynthesis. Chem Biol 20:34–44

    Article  CAS  Google Scholar 

  • Paget MS, Chamberlin L, Atrih A, Foster SJ, Buttner MJ (1999) Evidence that the extracytoplasmic function sigma factor σE is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol 181:204–211

    CAS  Google Scholar 

  • Pan Y, Liu G, Yang H, Tian Y, Tan H (2009) The pleiotropic regulator AdpA-L directly controls the pathway-specific activator of nikkomycin biosynthesis in Streptomyces ansochromogenes. Mol Microbiol 72:710–723

    Article  CAS  Google Scholar 

  • Rodríguez-García A, Combes P, Pérez-Redondo R, Smith MC, Smith MC (2005) Natural and synthetic tetracycline-inducible promoters for use in the antibiotic-producing bacteria Streptomyces. Nucleic Acids Res 33:e87

    Article  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold spring harbor laboratory, Cold Spring Harbor

    Google Scholar 

  • Seghezzi N, Amar P, Koebmann B, Jensen PR, Virolle MJ (2011) The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters. Appl Microbiol Biotechnol 90:615–623

    Article  CAS  Google Scholar 

  • Takano E, White J, Thompson CJ, Bibb MJ (1995) Construction of thiostrepton-inducible, high-copy-number expression vectors for use in Streptomyces spp. Gene 166:133–137

    Article  CAS  Google Scholar 

  • Wang G, Tan H (2004) Enhanced production of nikkomycin X by over-expression of SanO, a non-ribosomal peptide synthetase in Streptomyces ansochromogenes. Biotechnol Lett 26:229–233

    Article  CAS  Google Scholar 

  • Wang SL, Fan KQ, Yang X, Lin ZX, Xu XP, Yang KQ (2008) CabC, an EF-hand calcium-binding protein, is involved in Ca2+-mediated regulation of spore germination and aerial hypha formation in Streptomyces coelicolor. J Bacteriol 190:4061–4068

    Article  CAS  Google Scholar 

  • Yuan T, Yin C, Zhu C, Zhu B, Hu Y (2011) Improvement of antibiotic productivity by knock-out of dauW in Streptomyces coeruleobidus. Microbiol Res 166:539–547

    Article  CAS  Google Scholar 

  • Zeng H, Tan H, Li J (2002) Cloning and function of sanQ: a gene involved in nikkomycin biosynthesis of Streptomyces ansochromogenes. Curr Microbiol 45:175–179

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (grant nos. 31171202 and 31030003) and the Ministry of Science and Technology of China (grant nos. 2013CB734001 and 2012CB721103). We would like to thank Professor Mervyn Bibb (John Innes Centre, Norwich, UK) for providing S. coelicolor M1146. We also thank Dr. Bertolt Gust (University of Tübingen, Tübingen, Germany) for providing the PCR targeting system and Professor Keqian Yang (the Institute of Microbiology, Chinese Academy of Sciences, Beijing, China) for the gift of pIMEP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoqing Niu or Huarong Tan.

Additional information

Deyao Du and Yu Zhu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1194 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, D., Zhu, Y., Wei, J. et al. Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters. Appl Microbiol Biotechnol 97, 6383–6396 (2013). https://doi.org/10.1007/s00253-013-4836-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4836-7

Keywords

Navigation