Skip to main content

Advertisement

Log in

Metabolism of biodiesel-derived glycerol in probiotic Lactobacillus strains

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 08 January 2013

Abstract

Three probiotic Lactobacillus strains, Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus delbrueckii, were tested for their ability to assimilate and metabolize glycerol. Biodiesel-derived glycerol was used as the main carbon and energy source in batch microaerobic growth. Here, we show that the tested strains were able to assimilate glycerol, consuming between 38 and 48 % in approximately 24 h. L. acidophilus and L. delbrueckii showed a similar growth, higher than L. plantarum. The highest biomass reached was 2.11 g L−1 for L. acidophilus, with a cell mass yield (Y X/S) of 0.37 g g−1. L. delbrueckii and L. plantarum reached a biomass of 2.06 and 1.36 g L−1. All strains catabolize glycerol mainly through glycerol kinase (EC 2.7.1.30). For these lactobacillus species, kinetic parameters for glycerol kinase showed Michaelis–Menten constant (K m) ranging from 1.2 to 3.8 mM. The specific activities for glycerol kinase in these strains were in the range of 0.18 to 0.58 U mg protein−1, with L. acidophilus ATCC 4356 showing the maximum specific activity after 24 h of cultivation. Glycerol dehydrogenase activity was also detected in all strains studied but only for the reduction of glyceraldehyde with NADPH (K m for DL-glyceraldehyde ranging from 12.8 to 32.3 mM). This enzyme shows a very low oxidative activity with glycerol and NADP+ and, most likely, under physiological conditions, the oxidative reaction does not occur, supporting the assumption that the main metabolic flux concerning glycerol metabolism is through the glycerol kinase pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, Souther N, Dobson A, Duong T, Callanan M, Lick S, Hamrick A, Cano R, Klaenhammer TR (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci USA 102(11):3906–3912

    Article  CAS  Google Scholar 

  • Alvarez MD, Medina R, Pasteris SE, de Saad AMS, Sesma F (2004) Glycerol metabolism of Lactobacillus rhamnosus ATCC 7469: Cloning and expression of two glycerol kinase genes. J Mol Microb Biotech 7(4):170–181

    Article  Google Scholar 

  • Aragon CC, Ferreira-Dias S, Gattas EAD, Peres MDS (2008) Characterization of glycerol kinase from baker's yeast: response surface modeling of the enzymatic reaction. J Mol Catal B-Enzym 52–3:113–120

    Article  Google Scholar 

  • Axelsson L (2004) Lactic acid bacteria: classification and physiology. In: Salminen S, Wright A, Ouwehand A (eds) Lactic acid bacteria—microbiological and functional aspects, 3rd edn. Marcel Dekker, New York, pp 1–66

    Google Scholar 

  • Berger B, Pridmore RD, Barretto C, Delmas-Julien F, Schreiber K, Arigoni F, Brussow H (2007) Similarity and differences in the Lactobacillus acidophilus group identified by polyphasic analysis and comparative genomics. J Bacteriol 189(4):1311–1321

    Article  CAS  Google Scholar 

  • Brisson D, Vohl MC, St-Pierre J, Hudson TJ, Gaudet D (2001) Glycerol: a neglected variable in metabolic processes? Bioessays 23(6):534–542

    Article  CAS  Google Scholar 

  • Consortium U (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40(D1):D71–D75

    Article  Google Scholar 

  • De Angelis M, Bini L, Pallini V, Cocconcelli PS, Gobbetti M (2001) The acid-stress response in Lactobacillus sanfranciscensis CB1. Microbiology 147(Pt 7):1863–1873

    Google Scholar 

  • Hayashi SI, Lin EC (1967) Purification and properties of glycerol kinase from Escherichia coli. J Biol Chem 242(5):1030–1035

    CAS  Google Scholar 

  • Holmberg C, Beijer L, Rutberg B, Rutberg L (1990) Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase (glpD). J Gen Microbiol 136(12):2367–2375

    CAS  Google Scholar 

  • Holmberg C, Rutberg B (1989) Cloning of the glycerol kinase gene of Bacillus subtilis. FEMS Microbiol Lett 49(2–3):151–155

    Article  CAS  Google Scholar 

  • Huang HS, Yoshida T, Meng Y, Kabashima T, Ito K, Nishiya Y, Kawamura Y, Yoshimoto T (1997) Purification and characterization of thermostable glycerol kinase from Thermus flavus. J Ferment Bioeng 83(4):328–332

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  Google Scholar 

  • Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100(4):1990–1995

    Article  CAS  Google Scholar 

  • Lages F, Silva-Graca M, Lucas C (1999) Active glycerol uptake is a mechanism underlying halotolerance in yeasts: a study of 42 species. Microbiol-Uk 145:2577–2585

    CAS  Google Scholar 

  • Liepins J, Kuorelahti S, Penttila M, Richard P (2006) Enzymes for the NADPH-dependent reduction of dihydroxyacetone and D-glyceraldehyde and L-glyceraldehyde in the mould Hypocrea jecorina. FEBS J 273(18):4229–4235

    Article  CAS  Google Scholar 

  • Lin EC, Magasanik B (1960) The activation of glycerol dehydrogenase from Aerobacter aerogenes by monovalent cations. J Biol Chem 235:1820–1823

    CAS  Google Scholar 

  • Lorca GL, de Valdez GF (2001) A low-pH-inducible, stationary-phase acid tolerance response in Lactobacillus acidophilus CRL 639. Curr Microbiol 42(1):21–25

    Article  CAS  Google Scholar 

  • Lorquet F, Goffin P, Muscariello L, Baudry JB, Ladero V, Sacco M, Kleerebezem M, Hols P (2004) Characterization and functional analysis of the poxB gene, which encodes pyruvate oxidase in Lactobacillus plantarum. J Bacteriol 186(12):3749–3759

    Article  CAS  Google Scholar 

  • Luyten K, Albertyn J, Skibbe WF, Prior BA, Ramos J, Thevelein JM, Hohmann S (1995) Fps1, a yeast member of the Mip family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic-stress. EMBO J 14(7):1360–1371

    CAS  Google Scholar 

  • Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Diaz-Muniz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O'Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103(42):15611–15616. doi:10.1073/pnas.0607117103

    Article  Google Scholar 

  • Myint LL, El-Halwagi MM (2009) Process analysis and optimization of biodiesel production from soybean oil. Clean Technol Envir 11(3):263–276. doi:10.1007/s10098-008-0156-5

    Article  CAS  Google Scholar 

  • Nikel PI, Giordano AM, de Almeida A, Godoy MS, Pettinari MJ (2010) Elimination of D-lactate synthesis increases poly(3-hydroxybutyrate) and ethanol synthesis from glycerol and affects cofactor distribution in recombinant Escherichia coli. Appl Environ Microb 76(22):7400–7406

    Article  CAS  Google Scholar 

  • OECD-FAO (2011) Biofuels. In: OECD-FAO (ed) OECD-FAO agricultural outlook 2011–2020. vol chapter 3. OECD, Rome, pp 76–92

    Google Scholar 

  • Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenerg 32(1):60–71

    Article  CAS  Google Scholar 

  • Parvez S, Malik KA, Kang SA, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100(6):1171–1185

    Article  CAS  Google Scholar 

  • Pasteris SE, de Saad AMS (2009) Sugar-glycerol cofermentations by Lactobacillus hilgardii isolated from wine. J Agr Food Chem 57(9):3853–3858

    Article  CAS  Google Scholar 

  • Pettigrew DW, Ma DP, Conrad CA, Johnson JR (1988) Escherichia coli glycerol kinase. Cloning and sequencing of the Glpk gene and the primary structure of the enzyme. J Biol Chem 263(1):135–139

    CAS  Google Scholar 

  • Pettigrew DW, Yu GJ, Liu YG (1990) Nucleotide regulation of Escherichia coli glycerol kinase: initial-velocity and substrate binding studies. Biochemistry 29(37):8620–8627

    Article  CAS  Google Scholar 

  • Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23(2):195–200

    Article  CAS  Google Scholar 

  • Richter N, Neumann M, Liese A, Wohlgemuth R, Eggert T, Hummel W (2009) Characterisation of a recombinant NADP-dependent glycerol dehydrogenase from Gluconobacter oxydans and its application in the production of L-glyceraldehyde. ChemBioChem 10(11):1888–1896

    Article  CAS  Google Scholar 

  • Rittmann D, Lindner SN, Wendisch VF (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microb 74(20):6216–6222

    Article  CAS  Google Scholar 

  • Todorov SD (2008) Bacteriocin production by Lactobacillus plantarum AMA-K isolated from Amasi, a Zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA-K to Listeria sp. Braz J Microbiol 39(1):178–187

    Article  Google Scholar 

  • Veiga da Cunha MV, Foster MA (1992) Sugar-glycerol cofermentations in lactobacilli: the fate of lactate. J Bacteriol 174(3):1013–1019

    CAS  Google Scholar 

  • Voegele RT, Sweet GD, Boos W (1993) Glycerol kinase of Escherichia coli is activated by interaction with the glycerol facilitator. J Bacteriol 175(4):1087–1094

    CAS  Google Scholar 

  • Weber AL (1987) The triose model: glyceraldehyde as a source of energy and monomers for prebiotic condensation reactions. Orig Life Evol B 17(2):107–119

    Article  CAS  Google Scholar 

  • Wei S, Song Q, Wei D (2007) Production of Gluconobacter oxydans cells from low-cost culture medium for conversion of glycerol to dihydroxyacetone. Prep Biochem Biotechnol 37(2):113–121

    Article  CAS  Google Scholar 

  • Yamada H, Nagao A, Nishise H, Tani Y (1982) Studies on microbial glycerol dehydrogenase. 1. Formation of glycerol dehydrogenase by microorganisms. Agr Biol Chem Tokyo 46(9):2325–2331

    Article  CAS  Google Scholar 

  • Yamada K, Tani Y (1988) Glycerol dehydrogenase and dihydroxyacetone reductase of a methylotrophic yeast, Hansenula ofunaensis. Agr Biol Chem Tokyo 52(3):711–719

    Article  CAS  Google Scholar 

  • Yamada-Onodera K, Yamamoto H, Emoto E, Kawahara N, Tani Y (2002) Characterisation of glycerol dehydrogenase from a methylotrophic yeast, Hansenula polymorpha Dl-1, and its gene cloning. Acta Biotechnol 22:337–353

    Article  CAS  Google Scholar 

  • Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotech 18(3):213–219

    Article  CAS  Google Scholar 

  • Zhang JZ (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18(6):292–298

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP (Process No. 2008/57447-9). Juan D. Rivaldi also thanks to the International Mobility Program for Postgraduate Students—Banco Santader-USP-2010. Support was also provided by project PEst-OE/QUI/UI0612/2011 from Fundação para a Ciência e a Tecnologia, Portugal.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Luís C. Sousa Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivaldi, J.D., Sousa Silva, M.L.C., Duarte, L.C. et al. Metabolism of biodiesel-derived glycerol in probiotic Lactobacillus strains. Appl Microbiol Biotechnol 97, 1735–1743 (2013). https://doi.org/10.1007/s00253-012-4621-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4621-z

Keywords

Navigation