Skip to main content
Log in

Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Eukaryotic cells have developed diverse strategies to combat the harmful effects of a variety of stress conditions. In the model yeast Saccharomyces cerevisiae, the increased concentration of ethanol, as the primary fermentation product, will influence the membrane fluidity and be toxic to membrane proteins, leading to cell growth inhibition and even death. Though little is known about the complex signal network responsible for alcohol stress responses in yeast cells, several mechanisms have been reported to be associated with this process, including changes in gene expression, in membrane composition, and increases in chaperone proteins that help stabilize other denatured proteins. Here, we review the recent progresses in our understanding of ethanol resistance and stress responses in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alexandre H, Plourde L, Charpentier C, Francois J (1998) Lack of correlation between trehalose accumulation, cell viability, and intracellular acidification as induced by various stresses in Saccharomyces cerevisiae. Microbiology 144(Pt 4):1103–1111

    CAS  PubMed  Google Scholar 

  • Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B (2001) Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 498:98–103

    CAS  PubMed  Google Scholar 

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    CAS  PubMed  Google Scholar 

  • Aravind L, Iyer LM, Koonin EV (2003) Scores of RINGS but no PHDs in ubiquitin signaling. Cell Cycle 2:123–126

    CAS  PubMed  Google Scholar 

  • Bagnat M, Keranen S, Shevchenko A, Simons K (2000) Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc Natl Acad Sci U S A 97:3254–3259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barry JA, Gawrisch K (1995) Effects of ethanol on lipid bilayers containing cholesterol, gangliosides, and sphingomyelin. Biochemistry 34:8852–8860

    CAS  PubMed  Google Scholar 

  • Bell W, Klaassen P, Ohnacker M, Boller T, Herweijer M et al (1992) Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. Eur J Biochem 209:951–959

    CAS  PubMed  Google Scholar 

  • Betz C, Schlenstedt G, Bailer SM (2004) Asr1p, a novel yeast ring/PHD finger protein, signals alcohol stress to the nucleus. J Biol Chem 279:28174–28181

    CAS  PubMed  Google Scholar 

  • Bienz M (2006) The PHD finger, a nuclear protein-interaction domain. Trends Biochem Sci 31:35–40

    CAS  PubMed  Google Scholar 

  • Capili AD, Schultz DC, Rauscher IF, Borden KL (2001) Solution structure of the PHD domain from the KAP-1 corepressor: structural determinants for PHD, RING, and LIM zinc-binding domains. EMBO J 20:165–177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cartwright CP, Veazey FJ, Rose AH (1987) Effect of ethanol on activity of the plasma membrane ATPase in, and accumulation of glycine by, Saccharomyces cerevisiae. J Gen Microbiol 133:857–865

    CAS  PubMed  Google Scholar 

  • Craig EA, Gambill BD, Nelson RJ (1993) Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev 57:402–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daulny A, Geng F, Muratani M, Geisinger JM, Salghetti SE, Tansey WP (2008) Modulation of RNA polymerase II subunit composition by ubiquitylation. Proc Natl Acad Sci U S A 105:19649–19654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daum G, Lees ND, Bard M, Dickson R (1998) Biochemistry, cell biology, and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14:1471–1510

    CAS  PubMed  Google Scholar 

  • De Virgilio C, Burckert N, Bell W, Jeno P, Boller T, Wiemken A (1993) Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur J Biochem 212:315–323

    PubMed  Google Scholar 

  • Estruch F (2000) Stress-controlled transcription factors, stress-induced genes, and stress tolerance in budding yeast. FEMS Microbiol Rev 24:469–486

    CAS  PubMed  Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O'Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    CAS  PubMed  Google Scholar 

  • Fernandes AR, Sa-Correia I (2003) Transcription patterns of PMA1 and PMA2 genes and activity of plasma membrane H+-ATPase in Saccharomyces cerevisiae during diauxic growth and stationary phase. Yeast 20:207–219

    CAS  PubMed  Google Scholar 

  • Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H (2006) The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res 6:744–750

    CAS  PubMed  Google Scholar 

  • Furukawa K, Kitano H, Mizoguchi H, Hara S (2004) Effect of cellular inositol content on ethanol tolerance of Saccharomyces cerevisiae in sake brewing. J Biosci Bioeng 98:107–113

    CAS  PubMed  Google Scholar 

  • Galeote VA, Alexandre H, Bach B, Delobel P, Dequin S, Blondin B (2007) Sfl1p acts as an activator of the HSP30 gene in Saccharomyces cerevisiae. Curr Genet 52:55–63

    PubMed  Google Scholar 

  • Garrido C, Gurbuxani S, Ravagnan L, Kroemer G (2001) Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 286:433–442

    CAS  PubMed  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB et al (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes FC, Pataro C, Guerra JB, Neves MJ, Correa SR et al (2002) Physiological diversity and trehalose accumulation in Schizosaccharomyces pombe strains isolated from spontaneous fermentations during the production of the artisanal Brazilian cachaca. Can J Microbiol 48:399–406

    CAS  PubMed  Google Scholar 

  • Gorner W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G et al (1998) Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 12:586–597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorner W, Durchschlag E, Wolf J, Brown EL, Ammerer G et al (2002) Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor. EMBO J 21:135–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Chen S, Liu K, Liu Y, Ni L et al (2008) Isolation of heat shock factor HsfA1a-binding sites in vivo revealed variations of heat shock elements in Arabidopsis thaliana. Plant Cell Physiol 49:1306–1315

    CAS  PubMed  Google Scholar 

  • Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1264–1300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn GM, Shiu EC, Auger EA (1991) Mammalian stress proteins HSP70 and HSP28 coinduced by nicotine and either ethanol or heat. Mol Cell Biol 11:6034–6040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn JS, Hu Z, Thiele DJ, Iyer VR (2004) Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 24:5249–5256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hashikawa N, Sakurai H (2004) Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element. Mol Cell Biol 24:3648–3659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A 103:11206–11210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirata Y, Andoh T, Asahara T, Kikuchi A (2003) Yeast glycogen synthase kinase-3 activates Msn2p-dependent transcription of stress responsive genes. Mol Biol Cell 14:302–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu CK, Bai FW, An LJ (2005) Protein amino acid composition of plasma membranes affects membrane fluidity and thereby ethanol tolerance in a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae. Sheng Wu Gong Cheng Xue Bao 21:809–813

    CAS  PubMed  Google Scholar 

  • Huisinga KL, Pugh BF (2004) A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol Cell 13:573–585

    CAS  PubMed  Google Scholar 

  • Ingram LO (1990) Ethanol tolerance in bacteria. Crit Rev Biotechnol 9:305–319

    CAS  PubMed  Google Scholar 

  • Inoue Y, Tsujimoto Y, Kimura A (1998) Expression of the glyoxalase I gene of Saccharomyces cerevisiae is regulated by high osmolarity glycerol mitogen-activated protein kinase pathway in osmotic stress response. J Biol Chem 273:2977–2983

    CAS  PubMed  Google Scholar 

  • Inoue T, Iefuji H, Fujii T, Soga H, Satoh K (2000) Cloning and characterization of a gene complementing the mutation of an ethanol-sensitive mutant of sake yeast. Biosci Biotechnol Biochem 64:229–236

    CAS  PubMed  Google Scholar 

  • Izawa S, Ikeda K, Kita T, Inoue Y (2006) Asr1, an alcohol-responsive factor of Saccharomyces cerevisiae, is dispensable for alcoholic fermentation. Appl Microbiol Biotechnol 72:560–565

    CAS  PubMed  Google Scholar 

  • Jaattela M, Wissing D, Kokholm K, Kallunki T, Egeblad M (1998) Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 17:6124–6134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobsen BK, Pelham HR (1988) Constitutive binding of yeast heat shock factor to DNA in vivo. Mol Cell Biol 8:5040–5042

    CAS  PubMed  PubMed Central  Google Scholar 

  • James TC, Campbell S, Donnelly D, Bond U (2003) Transcription profile of brewery yeast under fermentation conditions. J Appl Microbiol 94:432–448

    CAS  PubMed  Google Scholar 

  • Kelley MJ, Bailis AM, Henry SA, Carman GM (1988) Regulation of phospholipid biosynthesis in Saccharomyces cerevisiae by inositol. Inositol is an inhibitor of phosphatidylserine synthase activity. J Biol Chem 263:18078–18085

    CAS  PubMed  Google Scholar 

  • Kirchhoff SR, Gupta S, Knowlton AA (2002) Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 105:2899–2904

    CAS  PubMed  Google Scholar 

  • Klein-Marcuschamer D, Stephanopoulos G (2008) Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains. Proc Natl Acad Sci U S A 105:2319–2324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi N, McEntee K (1993) Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol Cell Biol 13:248–256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota S, Takeo I, Kume K, Kanai M, Shitamukai A et al (2004) Effect of ethanol on cell growth of budding yeast: genes that are important for cell growth in the presence of ethanol. Biosci Biotechnol Biochem 68:968–972

    CAS  PubMed  Google Scholar 

  • Leao C, Van Uden N (1984) Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 774:43–48

    CAS  PubMed  Google Scholar 

  • Lee S, Carlson T, Christian N, Lea K, Kedzie J et al (2000) The yeast heat shock transcription factor changes conformation in response to superoxide and temperature. Mol Biol Cell 11:1753–1764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Zhang LM, Zhang KQ, Deng JS, Prandl R, Schoffl F (2006) Effects of heat stress on yeast heat shock factor-promoter binding in vivo. Acta Biochim Biophys Sin (Shanghai) 38:356–362

    CAS  Google Scholar 

  • Liu KH, Zhang LM, Ding XW, Deng BW, Chen WQ (2008) Analysis of in vivo binding of yeast heat shock factor to promoter DNA. AJB 7:1069–1071

    CAS  Google Scholar 

  • Lucero P, Penalver E, Moreno E, Lagunas R (1997) Moderate concentrations of ethanol inhibit endocytosis of the yeast maltose transporter. Appl Environ Microbiol 63:3831–3836

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacPherson S, Larochelle M, Turcotte B (2006) A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 70:583–604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marchler G, Schuller C, Adam G, Ruis H (1993) A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 12:1997–2003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morita Y, Nakamori S, Takagi H (2003) L-proline accumulation and freeze tolerance of Saccharomyces cerevisiae are caused by a mutation in the PRO1 gene encoding gamma-glutamyl kinase. Appl Environ Microbiol 69:212–219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moskvina E, Schuller C, Maurer CT, Mager WH, Ruis H (1998) A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast 14:1041–1050

    CAS  PubMed  Google Scholar 

  • Neves MJ, Francois J (1992) On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae. Biochem J 288(Pt 3):859–864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72:379–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholls S, Straffon M, Enjalbert B, Nantel A, Macaskill S et al (2004) Msn2- and Msn4-like transcription factors play no obvious roles in the stress responses of the fungal pathogen Candida albicans. Eukaryot Cell 3:1111–1123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa Y, Nitta A, Uchiyama H, Imamura T, Shimoi H, Ito K (2000) Tolerance mechanism of the ethanol-tolerant mutant of sake yeast. J Biosci Bioeng 90:313–320

    CAS  PubMed  Google Scholar 

  • Piper PW (1995) The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134:121–127

    CAS  PubMed  Google Scholar 

  • Piper PW, Talreja K, Panaretou B, Moradas-Ferreira P, Byrne K et al (1994) Induction of major heat shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold. Microbiology 140(Pt 11):3031–3038

    CAS  PubMed  Google Scholar 

  • Piper PW, Ortiz-Calderon C, Holyoak C, Coote P, Cole M (1997) Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase. Cell Stress Chaperones 2:12–24

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pirkkala L, Nykanen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15:1118–1131

    CAS  PubMed  Google Scholar 

  • Quan X, Rassadi R, Rabie B, Matusiewicz N, Stochaj U (2004) Regulated nuclear accumulation of the yeast hsp70 Ssa4p in ethanol-stressed cells is mediated by the N-terminal domain, requires the nuclear carrier Nmd5p and protein kinase C. FASEB J 18:899–901

    CAS  PubMed  Google Scholar 

  • Samuel D, Kumar TK, Ganesh G, Jayaraman G, Yang PW et al (2000) Proline inhibits aggregation during protein refolding. Protein Sci 9:344–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez Y, Taulien J, Borkovich KA, Lindquist S (1992) Hsp104 is required for tolerance to many forms of stress. EMBO J 11:2357–2364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelzle T, Beck T, Martin DE, Hall MN (2004) Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast. Mol Cell Biol 24:338–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuller C, Brewster JL, Alexander MR, Gustin MC, Ruis H (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J 13:4382–4389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seymour IJ, Piper PW (1999) Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. Microbiology 145(Pt 1):231–239

    CAS  PubMed  Google Scholar 

  • Shobayashi M, Mitsueda S, Ago M, Fujii T, Iwashita K, Iefuji H (2005) Effects of culture conditions on ergosterol biosynthesis by Saccharomyces cerevisiae. Biosci Biotechnol Biochem 69:2381–2388

    CAS  PubMed  Google Scholar 

  • Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648

    CAS  PubMed  Google Scholar 

  • Sorger PK, Pelham HR (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54:855–864

    CAS  PubMed  Google Scholar 

  • Swan TM, Watson K (1998) Stress tolerance in a yeast sterol auxotroph: role of ergosterol, heat shock proteins and trehalose. FEMS Microbiol Lett 169:191–197

    CAS  PubMed  Google Scholar 

  • Takagi H, Takaoka M, Kawaguchi A, Kubo Y (2005) Effect of L-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl Environ Microbiol 71:8656–8662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takemori Y, Sakaguchi A, Matsuda S, Mizukami Y, Sakurai H (2006) Stress-induced transcription of the endoplasmic reticulum oxidoreductin gene ERO1 in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 275:89–96

    CAS  PubMed  Google Scholar 

  • Tanaka M, Machida Y, Nukina N (2005) A novel therapeutic strategy for polyglutamine diseases by stabilizing aggregation-prone proteins with small molecules. J Mol Med 83:343–352

    CAS  PubMed  Google Scholar 

  • Terao Y, Nakamori S, Takagi H (2003) Gene dosage effect of L-proline biosynthetic enzymes on L-proline accumulation and freeze tolerance in Saccharomyces cerevisiae. Appl Environ Microbiol 69:6527–6532

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Voorst F, Houghton-Larsen J, Jonson L, Kielland-Brandt MC, Brandt A (2006) Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 23:351–359

    PubMed  Google Scholar 

  • Vianna CR, Silva CL, Neves MJ, Rosa CA (2008) Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaca: trehalose metabolism, heat and ethanol resistance. Antonie Van Leeuwenhoek 93:205–217

    CAS  PubMed  Google Scholar 

  • Watanabe M, Tamura K, Magbanua JP, Takano K, Kitamoto K et al (2007) Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol tolerance sake yeast Kyokai no. 11. J Biosci Bioeng 104:163–170

    CAS  PubMed  Google Scholar 

  • Watson K, Cavicchioli R (1983) Acquisition of ethanol tolerance in yeast cells by heat shock. Biotechnology Letters 5:683–688

    CAS  Google Scholar 

  • Weber FJ, de Bont JA (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245

    CAS  PubMed  Google Scholar 

  • Wiederrecht G, Seto D, Parker CS (1988) Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54:841–853

    CAS  PubMed  Google Scholar 

  • Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469

    CAS  PubMed  Google Scholar 

  • Xiao D, Wu S, Zhu X, Chen Y, Guo X (2008) Effects of Soya Fatty Acids on Cassava Ethanol Fermentation. Appl Biochem Biotechnol doi:https://doi.org/10.1007/s12010-008-8344-7

    PubMed  Google Scholar 

  • Yamamoto A, Mizukami Y, Sakurai H (2005) Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J Biol Chem 280:11911–11919

    CAS  PubMed  Google Scholar 

  • You KM, Rosenfield CL, Knipple DC (2003) Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol 69:1499–1503

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research described here is supported by the National Basic Research Program of China (program 973, grant number 2007CB411600) and the Department of Science and Technology of Yunnan Province, China (grant number 2006PY01-27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keqin Zhang.

Additional information

Junmei Ding and Xiaowei Huang contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, J., Huang, X., Zhang, L. et al. Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae . Appl Microbiol Biotechnol 85, 253–263 (2009). https://doi.org/10.1007/s00253-009-2223-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2223-1

Keywords

Navigation