Skip to main content

Advertisement

Log in

Chitin purification from shrimp wastes by microbial deproteination and decalcification

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Chitin was purified from Penaeus monodon and Crangon crangon shells using a two-stage fermentation process with anaerobic deproteination followed by decalcification through homofermentative lactic acid fermentation. Deproteinating enrichment cultures from sewage sludge and ground meat (GM) were used with a proteolytic activity of 59 and 61 mg N l−1 h−1 with dried and 26 and 35 mg N l−1 h−1 with wet P. monodon shells. With 100 g wet cells of proteolytic bacteria per liter, protein removal was obtained in 42 h. An anaerobic spore-forming bacterium HP1 was isolated from enrichment GM. Its proteolytic activity was 76 U ml−1 compared to 44 U ml−1 of the consortium. Glucose was fermented with Lactobacillus casei MRS1 to lactic acid. At a pH of 3.6, calcium carbonate of the shells was solubilised. After deproteination and decalcification of P. monodon or C. crangon shells, the protein content was 5.8% or 6.7%, and the calcium content was 0.3% or 0.4%, respectively. The viscosity of the chitin from P. monodon and C. crangon was 45 and 135 mPa s, respectively, whereas purchased crab shell chitin (practical grade) had a viscosity of 21 mPa s, indicating a higher quality of biologically purified chitin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bautista J, Jover M, Gutierrez JF, Corpas R, Cremades O, Fontiveros E, Iglesias F, Vega J (2001) Preparation of crayfish chitin by in situ lactic acid production. Process Biochem 37:229–234

    Article  CAS  Google Scholar 

  • Benitez JA, Silva AJ, Finkelstein RA (2001) Environmental signals controlling production of hemagglutinin/protease in Vibrio cholerae. Infect Immun 69(10):6549–6553

    Article  CAS  Google Scholar 

  • Blair HS, Ho TC (1980) Studies on the adsorption and diffusion of ions in chitosan. J Chem Technol Biotechnol 31:6–9

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248

    Article  CAS  Google Scholar 

  • Cira LA, Huerta S, Hall GM, Shirai K (2002) Pilot scale lactic acid fermentation of shrimp waste for chitin recovery. Process Biochem 37:1359–1366

    Article  CAS  Google Scholar 

  • Cremades O, Ponce E, Corpas R, Gutieérrez JF, Jover M, Alvarez-Ossorio MC, Parrado J, Bautista J (2001) Processing of crawfish (Procambarus clarkii) for the preparation of carotenoproteins and chitin. J Agric Food Chem 49:5468–5472

    Article  CAS  Google Scholar 

  • Charoenvuttihamm P, Shi J, Mittal GS (2006) Chitin extraction from black tiger shrimp (Penaeus monodon) waste using organic acids. Sep Sci Technol 41:1135–1153

    Article  Google Scholar 

  • DEV (1983) Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung. Verlag Chemie, Weinheim

    Google Scholar 

  • DeMan JC, Rogosa M, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135

    Article  Google Scholar 

  • Dolphen R, Sakkayawong N, Thiravetyan P, Nakbanpote W (2007) Adsorption of reactive Red 141 from wastewater onto modified chitin. J Hazard Mater 145:250–255

    Article  CAS  Google Scholar 

  • Dutta PK, Ravikumar MNV, Dutta J (2002) Chitin and chitosan for versatile applications. J Macromol Sci 42(3):307–354

    Article  Google Scholar 

  • FAO (2008) Food and agricultural organisation; FAOSTAT data base. http://faostat.fao.org/faostat/collections?subset=fisheries

  • Felse PA, Panda T (1999) Studies on applications of chitin and its derivatives. Bioprocess Eng 20:505–512

    Article  CAS  Google Scholar 

  • Healy MG, Romo CR, Bustos R (1994) Bioconversion of marine crustacean shell waste. Resour Conserv Recycl 11:139–147

    Article  Google Scholar 

  • Healy M, Green A, Healy A (2003) Bioprocessing of marine crustacean shell waste. Acta Biotechnol 23(2–3):151–160

    Article  CAS  Google Scholar 

  • Hu X, Du Y, Tang Y, Wang Q, Feng T, Yang J, Kennedy JF (2007) Solubility and property of chitin in NaOH/urea aqueous solution. Carbohydr Polym 70:451–458

    Article  CAS  Google Scholar 

  • Jung WJ, Kuk JH, Kim KY, Park RD (2005) Demineralization of red crab shell waste by lactic acid fermentation. Appl Microbiol Biotechnol 67:851–854

    Article  CAS  Google Scholar 

  • Jung WJ, Jo GH, Kuk JH, Kim KY, Park RD (2006) Extraction of chitin from red crab shell waste by cofermentation with Lactobacillus paracasei subsp. tolerans KCTC-3074 and Serratia marcescens FS-3. Appl Microbiol Biotechnol 71:234–237

    Article  CAS  Google Scholar 

  • Jung WJ, Jo GH, Kuk JH, Kim KY, Oh KT, Park RD (2007) Production of chitin from red crab shell waste by successive fermentation with Lactobacillus paracasei KCTC-3074 and Serratia marcescens FS-3. Carbohydr Polym 68:746–750

    Article  CAS  Google Scholar 

  • Percot A, Viton C, Domard A (2003) Optimization of chitin extraction from shrimp shells. Biomacromolecules 4:12–18

    Article  CAS  Google Scholar 

  • Rao SM, Munoz J, Stevens WF (2000) Critical factors in chitin production by fermentation of shrimp biowaste. Appl Microbiol Biotechnol 54:808–813

    Article  CAS  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  • Rødde RH, Einbu A, Varum KM (2008) A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydr Polym 71(3):388–393

    Article  Google Scholar 

  • Shimahara K, Takiguchi Y, Ohkouchi K, Kitamura K, Okada O (1984) Chemical composition and some properties of crustacean chitin prepared by use of proteolytic activity of Pseudomonas maltophilia LC102. In: Zikakis JP (ed) Chitin, Chitosan and related enzymes. Academic, New York, pp 239–246

    Chapter  Google Scholar 

  • Shirai K, Guerrero I, Huerta S, Saucedo G, Castillo A, Gonzales RO, Hall GM (2001) Effect of initial glucose concentration and inoculation level of lactic acid bacteria in shrimp waste ensilation. Enzyme Microb Technol 28:446–452

    Article  CAS  Google Scholar 

  • Sini TK, Santhosh S, Mathew PT (2007) Study on the production of chitin and chitosan from shrimp shell by using Bacillus subtilis fermentation. Carbohydr Res 342:2423–2429

    Article  CAS  Google Scholar 

  • Tharanathan RN, Kittur FS (2003) Chitin—the undisputed biomolecule of great potential. Crit Rev Food Nutr 43(1):61–87

    Article  CAS  Google Scholar 

  • Tolaimate A, Desbrieres J, Rhazi M, Alagui A (2003) Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polymer 44:7939–7952

    Article  CAS  Google Scholar 

  • Waldeck J, Daum G, Bisping B, Meinhardt F (2006) Isolation and molecular characterization of chitinase-deficient Bacillus licheniformis strains capable of deproteinization of shrimp shell waste to obtain highly viscous chitin. Appl Environ Microbiol 72:7879–7885

    Article  CAS  Google Scholar 

  • Zhang M, Haga A, Sekigchi H, Hirano S (2000) Structure of insect chitin isolated from beetle larva cuticle and silkworm (Bombyx mori) pupa exuvia. Int J Biol Macromol 27:99–105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was financed by the Federal Ministry of Education and Research, BMBF (Bonn), grant number 0313643 in the framework of the Indonesian–German IG-Biotech Cooperation. We thank Prof. Dr. Müller von der Haegen and his team from SeaLab Wesselburen for providing C. crangon shells and for the very fruitful cooperation and many discussions. We thank Dipl. Biol. Andrea Freiberg for isolation of pure culture HP1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Winter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Gallert, C. & Winter, J. Chitin purification from shrimp wastes by microbial deproteination and decalcification. Appl Microbiol Biotechnol 79, 687–697 (2008). https://doi.org/10.1007/s00253-008-1471-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1471-9

Keywords

Navigation