Skip to main content
Log in

Preparation of a whole-cell biocatalyst of mutated Candida antarctica lipase B (mCALB) by a yeast molecular display system and its practical properties

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To prepare a whole-cell biocatalyst of a stable lipase at a low price, mutated Candida antarctica lipase B (mCALB) constructed on the basis of the primary sequences of CALBs from C. antarctica CBS 6678 strain and from C. antarctica LF 058 strain was displayed on a yeast cell surface by α-agglutinin as the anchor protein for easy handling and stability of the enzyme. When mCALB was displayed on the yeast cell surface, it showed a preference for short chain fatty acids, an advantage for producing flavors; although when Rhizopus oryzae lipase (ROL) was displayed, the substrate specificity was for middle chain lengths. When the thermal stability of mCALB on the cell surface was compared with that of ROL on a cell surface, T 1/2, the temperature required to give a residual activity of 50% for heat treatment of 30 min, was 60°C for mCALB and 44°C for ROL indicating that mCALB displayed on cell surface has a higher thermal stability. Furthermore, the activity of the displayed mCALB against p-nitrophenyl butyrate was 25-fold higher than that of soluble CALB, as reported previously. These findings suggest that mCALB-displaying yeast is more practical for industrial use as the whole-cell biocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agterberg M, Adriaanse H, Lankhof H, Meloen R, Tommassen J (1990) Outer membrane PhoE protein of Escherichia coli as a carrier for foreign antigenic determinants: immunogenicity of epitopes of foot-and-mouth disease virus. Vaccine 8:85–91

    Article  CAS  Google Scholar 

  • Anderson EM, Larsson KM, Kirk O (1998) One biocatalyst: many applications: the use of Candida antarctica B-Lipase in organic synthesis. Biocatal Biotransform 16:181–204

    Article  CAS  Google Scholar 

  • Benhar I (2001) Biotechnological applications of phage and cell display. Biotechnol Adv 19:1–33

    Article  CAS  Google Scholar 

  • Blank K, Morfill J, Gumpp H, Gaub HE (2006) Functional expression of Candida antarctica lipase B in Eschericha coli. J Biotechnol 125:474–483

    Article  CAS  Google Scholar 

  • Charbit A, Molla A, Saurin W, Hofnung M (1988) Versatility of a vector for expressing foreign polypeptides at the surface of gram-negative bacteria. Gene 70:181–189

    Article  CAS  Google Scholar 

  • Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68:5136–5141

    Article  CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  Google Scholar 

  • Kato M, Kuzuhara Y, Maeda H, Shiraga S, Ueda M (2006) Analysis of a processing system for proteases using yeast cell surface engineering: conversion of precursor of proteinase A to active proteinase A. Appl Microbiol Biotechnol 72:1229–1237

    Article  CAS  Google Scholar 

  • Kirk O, Christensen MW (2002) Lipases from Candida antarctica: unique biocatalysts from a unique origin. Org Process Res Dev 6:446–451

    Article  CAS  Google Scholar 

  • Kobori H, Sato M, Osumi M (1992) Relationship of actin organization to growth in the two forms of the dimorphic yeast Candida tropicalis. Protoplasma 167:193–204

    Article  CAS  Google Scholar 

  • Kondo A, Ueda M (2004) Yeast cell-surface display—applications of molecular display. Appl Microbiol Biotechnol 64:28–40

    Article  CAS  Google Scholar 

  • Kondo A, Shigechi H, Abe M, Uyama K, Matsumoto T, Takahashi S, Ueda M, Tanaka A, Kishimoto M, Fukuda H (2002) High-level production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell surface glucoamylase. Appl Microbiol Biotechnol 58:291–296

    Article  CAS  Google Scholar 

  • Martinell M, Holmquist M, Hult K (1995) On the interfacial activation of Candida antarctica lipase A and lipase B as compared with Humicola lanuginosa lipase. Biochim Biophys Acta 1258:272–276

    Article  Google Scholar 

  • Murai T, Ueda M, Atomi H, Shibasaki S, Kamasawa N, Osumi M, Kamaguchi T, Arai M, Tanaka A (1997) Genetic immobilization of cellulase on the cell surface of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 48:499–503

    Article  CAS  Google Scholar 

  • Murai T, Ueda M, Kamaguchi T, Arai M, Tanaka A (1998) Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing β-glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl Environ Microbiol 64:4857–4861

    Article  CAS  Google Scholar 

  • Narita J, Okano K, Tateno T, Tanino T, Sewaki, T, Sung MH, Fukuda H, Kondo A (2006) Display of active enzymes on the cell surface of Escherichia coli using PgsA anchor protein and their application to bioconversion. Appl Microbiol Biotechnol 70:564–572

    Article  CAS  Google Scholar 

  • Patkar S, Bjorkling F, Zundell M, Schulein M, Svendsen A, Heldt-Hansen HP, Gormsen E (1993) Purification of two lipases from Candida antarctica and their inhibition by various inhibitors. Indian J Chem 32B:76–80

    CAS  Google Scholar 

  • Rotticci D, Norin T, Hult K, Martinell M (2000) An active-site titration method for lipases. Biochim Biophys Acta 1483:132–140

    Article  CAS  Google Scholar 

  • Sharma R, Chisti Y, Banerjee C (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662

    Article  CAS  Google Scholar 

  • Shibasaki S, Ueda M, Iizuka T, Hirayama M, Ikeda Y, Kamasawa M, Osumi M, Tanaka A (2001) Quantitative evaluation of the enhanced green fluorescent protein displayed on the cell surface of Saccharomyces cerevisiae by the fluorometric and confocal laser scanning microscopic analysis. Appl Microbiol Biotechnol 55:471–475

    Article  CAS  Google Scholar 

  • Shiraga S, Ueda M, Takahashi S, Tanaka A (2002) Construction of the combinatorial library of Rhizopus oryzae lipase mutated in the lid domain by displaying on yeast cell surface. J Mol Catal B Enzym 17:167–173

    Article  CAS  Google Scholar 

  • Shiraga S, Ishiguro M, Fukami H, Nakao M, Ueda M (2005a) Creation of Rhizopus oryzae lipase having a unique oxyanion hole by combinatorial mutagenesis in the lid domain. Appl Microbiol Biotechnol 68:779–785

    Article  CAS  Google Scholar 

  • Shiraga S, Kawakami M, Ishiguro M, Ueda M (2005b) Enhanced reactivity of Rhizopus oryzae lipase displayed on yeast cell surfaces in organic solvents: potential as a whole-cell biocatalyst in organic solvents. Appl Environ Microbiol 71:4335–4338

    Article  CAS  Google Scholar 

  • Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  CAS  Google Scholar 

  • Suen WC, Zhang N, Xiao L, Madison V, Zaks A (2004) Improved activity and thermostability of Candida antarctica lipase B by DNA family shuffling. Protein Eng Des Sel 17:133–140

    Article  CAS  Google Scholar 

  • Tajima M, Nogi Y, Fukasawa T (1985) Primary structure of the Saccharomyces cerevisiae GAL7 gene. Yeast 1:67–77

    Article  CAS  Google Scholar 

  • Takahashi S, Ueda M, Atomi H, Beer HD, Bornscheuer UT, Schmid RD, Tanaka A (1998) Extracellular production of active Rhizopus oryzae lipase by Saccharomyces cerevisiae. J Ferment Bioeng 86:164–168

    Article  CAS  Google Scholar 

  • Ueda M (2004) Future direction of molecular display by yeast-cell surface engineering. J Mol Catal B Enzym 28:139–143

    Article  CAS  Google Scholar 

  • Uppenberg J, Hansen MT, Patkar S, Jones TA (1994) The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 2:293–308

    Article  CAS  Google Scholar 

  • Zhang N, Suen WC, Windsor W, Xiao L, Madison V, Zaks A (2003) Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution. Protein Eng 16:599–605

    Article  CAS  Google Scholar 

  • Zou W, Ueda M, Tanaka A (2002) Screening of a molecule endowing Saccharomyces cerevisiae with n-nonane-tolerance from a combinatorial random protein library. Appl Microbiol Biotechnol 58:806–812

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Research and Development Program for New Bio-industry Initiatives and the Ministry of Education, Science, Sports and Culture, Japan, a grant-in-aid for Scientific Research on Priority Areas and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiko Kato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, M., Fuchimoto, J., Tanino, T. et al. Preparation of a whole-cell biocatalyst of mutated Candida antarctica lipase B (mCALB) by a yeast molecular display system and its practical properties. Appl Microbiol Biotechnol 75, 549–555 (2007). https://doi.org/10.1007/s00253-006-0835-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0835-2

Keywords

Navigation