Skip to main content

Advertisement

Log in

Evidence for Selective Bacterial Community Structuring in the Freshwater Sponge Ephydatia fluviatilis

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

To understand the functioning of sponges, knowledge of the structure of their associated microbial communities is necessary. However, our perception of sponge-associated microbiomes remains mainly restricted to marine ecosystems. Here, we report on the molecular diversity and composition of bacteria in the freshwater sponge Ephydatia fluviatilis inhabiting the artificial lake Vinkeveense Plassen, Utrecht, The Netherlands. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprints revealed that the apparent diversities within the domain Bacteria and the phylum Actinobacteria were lower in E. fluviatilis than in bulk water. Enrichment of specific PCR-DGGE bands in E. fluviatilis was detected. Furthermore, sponge- and bulk water-derived bacterial clone libraries differed with respect to bacterial community composition at the phylum level. E. fluviatilis-derived sequences were affiliated with six recognized phyla, i.e., Proteobacteria, Planctomycetes, Actinobacteria, Bacteroidetes, Chlamydiae and Verrucomicrobia, in order of relative abundance; next to the uncultured candidate phylum TM7 and one deeply rooted bacterial lineage of undefined taxonomy (BLUT). Actinobacteria, Proteobacteria, and Bacteroidetes were the dominant bacterial phyla in the freshwater clone library whereas sequences affiliated with Planctomycetes, Verrucomicrobia, Acidobacteria and Armatimonadetes were found at lower frequencies. Fine-tuned phylogenetic inference showed no or negligible overlaps between the E. fluviatilis and water-derived phylotypes within bacterial taxa such as Alphaproteobacteria, Bacteroidetes and Actinobacteria. We also ascertained the status of two alphaproteobacterial lineages as freshwater sponge-specific phylogenetic clusters, and report on high distinctiveness of other E. fluviatilis specific phylotypes, especially within the Bacteroidetes, Planctomycetes and Chlamydia taxa. This study supports the contention that the composition and diversity of bacteria in E. fluviatilis is partially driven by the host organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177

    Article  PubMed  CAS  Google Scholar 

  2. Manconi R, Pronzato R (2008) Global diversity of sponges (Porifera: Spongillina) in freshwater. Hydrobiologia 595:27–33

    Article  Google Scholar 

  3. Brauer A (1909) Die Süsswasserfauna Deutschlands: Mollusca, Nemertini, Bryozoen, turbellaria, tricladida, spongillidae, hydrozoa. Gustav Fischer

  4. Gernert C, Glöckner FO, Krohne G, Hentschel U (2005) Microbial diversity of the freshwater sponge Spongilla lacustris. Microb Ecol 50:206–212

    Article  PubMed  CAS  Google Scholar 

  5. Wilkinson CR (1980) Nutrient translocation from green algal symbionts to the freshwater sponge Ephydatia fluviatilis. Hydrobiologia 75:241–250

    Article  Google Scholar 

  6. Vogel S (1977) Current-induced flow through living sponges in nature. Proc Natl Acad Sci 74:2069–2071

    Article  PubMed  CAS  Google Scholar 

  7. Vacelet J (1975) Étude en microscopie électronique de l’association entre bactéries et spongiaires du genre Verongia (Dictyoceratida). J Microsc Biol Cell 23:271–288

    Google Scholar 

  8. Simister RL, Deines P, Botté ES, Webster NS, Taylor MW (2011) Sponge–specific clusters revisited: a comprehensive phylogeny of sponge–associated microorganisms. Environ Microbiol 14:517–524

    Article  PubMed  Google Scholar 

  9. Hardoim C, Costa R, Araujo F, Hajdu E, Peixoto R, Lins U, Rosado A, Van Elsas J (2009) Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters. Appl Environ Microbiol 75:3331–3343

    Article  PubMed  CAS  Google Scholar 

  10. Webster NS, Taylor MW, Behnam F, Lücker S, Rattei T, Whalan S, Horn M, Wagner M (2010) Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol 12:2070–2082

    PubMed  CAS  Google Scholar 

  11. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  PubMed  CAS  Google Scholar 

  12. Fieseler L, Horn M, Wagner M, Hentschel U (2004) Discovery of the novel candidate phylum "Poribacteria" in marine sponges. Appl Environ Microbiol 70:3724–3732

    Article  PubMed  CAS  Google Scholar 

  13. Lafi FF, Garson MJ, Fuerst JA (2005) Culturable bacterial symbionts isolated from two distinct sponge species (Pseudoceratina clavata and Rhabdastrella globostellata) from the Great Barrier Reef display similar phylogenetic diversity. Microb Ecol 50:213–220

    Article  PubMed  CAS  Google Scholar 

  14. Taylor MW, Schupp PJ, De Nys R, Kjelleberg S, Steinberg PD (2005) Biogeography of bacteria associated with the marine sponge Cymbastela concentrica. Environ Microbiol 7:419–433

    Article  PubMed  CAS  Google Scholar 

  15. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    Article  PubMed  CAS  Google Scholar 

  16. Webster NS, Taylor MW (2011) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 14:335–346

    Article  PubMed  Google Scholar 

  17. Kennedy J, Marchesi JR, Dobson ADW (2007) Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges. Appl Microbiol Biotechnol 75:11–20

    Article  PubMed  CAS  Google Scholar 

  18. Kim TK, Garson MJ, Fuerst JA (2005) Marine actinomycetes related to the 'Salinospora' group from the Great Barrier Reef sponge Pseudoceratina clavata. Environ Microbiol 7:509–518

    Article  PubMed  CAS  Google Scholar 

  19. Bull AT, Stach JEM (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15:491–499

    Article  PubMed  CAS  Google Scholar 

  20. Schneemann I, Nagel K, Kajahn I, Labes A, Wiese J, Imhoff JF (2010) Comprehensive investigation of marine Actinobacteria associated with the sponge Halichondria panicea. Appl Environ Microbiol 76:3702–3714

    Article  PubMed  CAS  Google Scholar 

  21. Thomas TRA, Kavlekar DP, LokaBharathi PA (2010) Marine drugs from sponge–microbe association—a review. Marine Drugs 8:1417–1468

    Article  PubMed  CAS  Google Scholar 

  22. Schirmer A, Gadkari R, Reeves CD, Ibrahim F, DeLong EF, Hutchinson CR (2005) Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl Environ Microbiol 71:4840–4849

    Article  PubMed  CAS  Google Scholar 

  23. Piel J, Hui D, Wen G, Butzke D, Platzer M, Fusetani N, Matsunaga S (2004) Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Natl Acad Sci U S A 101:16222–16227

    Article  PubMed  CAS  Google Scholar 

  24. Piel J (2002) A polyketide synthase–peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci U S A 99:14002–14007

    Article  PubMed  CAS  Google Scholar 

  25. Kaluzhnaya OV, Itskovich VB, McCormack GP (2011) Phylogenetic diversity of bacteria associated with the endemic freshwater sponge Lubomirskia baicalensis. World J Microbiol Biotechnol: 1–5

  26. Greenberg AE, Clesceri LS, Eaton AD (1998) Inorganic nonmetalic constituents. In: Eaton, AD, Clesceri, LS, Rice, EW, Greenberg, AE (eds.) Standard methods for the examination of water and wastewater, 20 edn. American Public Health Association

  27. Muphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  Google Scholar 

  28. Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249

    Article  PubMed  CAS  Google Scholar 

  29. Heuer H, Krsek M, Baker P, Smalla K, Wellington E (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    PubMed  CAS  Google Scholar 

  30. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  31. Milling A, Smalla K, Maidl FX, Schloter M, Munch JC (2005) Effects of transgenic potatoes with an altered starch composition on the diversity of soil and rhizosphere bacteria and fungi. Plant Soil 266:23–39

    Article  Google Scholar 

  32. Heuer H, Wieland G, Schönfeld J, Schönwälder A, Gomes N, Smalla K (2001) Bacterial community profiling using DGGE or TGGE analysis. Environmental Molecular Microbiology: Protocols and Applications Horizon Scientific Press, Wymondham, pp 177–190

    Google Scholar 

  33. Costa R, Salles JF, Berg G, Smalla K (2006) Cultivation–independent analysis of Pseudomonas species in soil and in the rhizosphere of field–grown Verticillium dahliae host plants. Environ Microbiol 8:2136–2149

    Article  PubMed  CAS  Google Scholar 

  34. Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    PubMed  CAS  Google Scholar 

  35. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  PubMed  CAS  Google Scholar 

  36. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Buchner A, Lai T, Steppi S, Jobb G, Förster W (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  37. Hugenholtz P, Tyson GW, Webb RI, Wagner AM, Blackall LL (2001) Investigation of candidate division TM7, a recently recognized major lineage of the domain bacteria with no known pure-culture representatives. Appl Environ Microbiol 67:411–419

    Article  PubMed  CAS  Google Scholar 

  38. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu W-H, Lakshmanan A, Wade WG (2010) The human oral microbiome. J Bacteriol 192:5002–5017

    Article  PubMed  CAS  Google Scholar 

  39. Luo C, Xie S, Sun W, Li X, Cupples AM (2009) Identification of a novel toluene-degrading bacterium from the candidate phylum TM7, as determined by DNA stable isotope probing. Appl Environ Microbiol 75:4644–4647

    Article  PubMed  CAS  Google Scholar 

  40. Li M, Gu J-D (2011) Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria. Appl Microbiol Biotechnol 90:1241–1252

    Article  PubMed  CAS  Google Scholar 

  41. Hoffmann F, Radax R, Woebken D, Holtappels M, Lavik G, Rapp HT, Schlaeppy M-L, Schleper C, Kuypers MMM (2009) Complex nitrogen cycling in the sponge Geodia barretti. Environ Microbiol 11:2228–2243

    Article  PubMed  CAS  Google Scholar 

  42. Mohamed NM, Saito K, Tal Y, Hill RT (2010) Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME J 4:38–48

    Article  PubMed  CAS  Google Scholar 

  43. Allgaier M, Grossart HP (2006) Seasonal dynamics and phylogenetic diversity of free-living and particle-associated bacterial communities in four lakes in northeastern Germany. Aquat Microb Ecol 45:115–128

    Article  Google Scholar 

  44. Parveen B, Reveilliez JP, Mary I, Ravet V, Bronner G, Mangot JF, Domaizon I, Debroas D (2011) Diversity and dynamics of free–living and particle–associated Betaproteobacteria and Actinobacteria in relation to phytoplankton and zooplankton communities. FEMS Microbiol Ecol 77:461–476

    Article  PubMed  CAS  Google Scholar 

  45. Parfenova V, Terkina I, Kostornova TY, Nikulina I, Cherny V, Maksimova E (2008) Microbial community of freshwater sponges in Lake Baikal. Biol Bull 35:374–379

    Article  Google Scholar 

  46. Clum A, Nolan M, Lang E, Del Rio TG, Tice H, Copeland A, Cheng JF, Lucas S, Chen F, Bruce D (2009) Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICPT). Stand Genomic Sci 1:38–45

    Article  PubMed  Google Scholar 

  47. Itoh T, Yamanoi K, Kudo T, Ohkuma M, Takashina T (2011) Aciditerrimonas ferrireducens gen. nov., sp. nov., an iron-reducing thermoacidophilic actinobacterium isolated from a solfataric field. Int J Syst Evol Microbiol 61:1281–1285

    Article  PubMed  Google Scholar 

  48. Lee OO, Chui PY, Wong YH, Pawlik JR, Qian PY (2009) Evidence for vertical transmission of bacterial symbionts from adult to embryo in the Caribbean sponge Svenzea zeai. Appl Environ Microbiol 75:6147–6156

    Article  PubMed  CAS  Google Scholar 

  49. Yamamoto S, Harayama S (1998) Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, ropD and 16S rRNA genes. Int J Syst Bacteriol 48:813–819

    Article  PubMed  CAS  Google Scholar 

  50. Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A, Harayama S (2000) Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiol UK 146:2385–2394

    CAS  Google Scholar 

  51. Costa R, Gomes NCM, Kroegerrecklenfort E, Opelt K, Berg G, Smalla K (2007) Pseudomonas community structure and antagonistic potential in the rhizosphere: insights gained by combining phylogenetic and functional gene-based analyses. Environ Microbiol 9:2260–2273

    Article  PubMed  CAS  Google Scholar 

  52. de Souza JT (2002) Distribution, diversity and activity of antibiotic-producing Pseudomonas spp. Doctoral thesis, Wageningen University

  53. Bodilis J, Hedde M, Orange N, Barray S (2006) OprF polymorphism as a marker of ecological niche in Pseudomonas. Environ Microbiol 8:1544–1551

    Article  PubMed  CAS  Google Scholar 

  54. Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26:1408–1446

    Article  PubMed  CAS  Google Scholar 

  55. Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  PubMed  CAS  Google Scholar 

  56. Zwart G, Hiorns WD, Methé BA, van Agterveld MP, Huismans R, Nold SC, Zehr JP, Laanbroek HJ (1998) Nearly identical 16S rRNA sequences recovered from lakes in North America and Europe indicate the existence of clades of globally distributed freshwater bacteria. Syst Appl Microbiol 21:546–556

    Article  PubMed  CAS  Google Scholar 

  57. Zwart G, Van Hannen EJ, Kamst-van Agterveld MP, Van der Gucht K, Lindström ES, Van Wichelen J, Lauridsen T, Crump BC, Han SK, Declerck S (2003) Rapid screening for freshwater bacterial groups by using reverse line blot hybridization. Appl Environ Microbiol 69:5875–5883

    Article  PubMed  CAS  Google Scholar 

  58. Heckmann K, Schmidt HJ (1987) Polynucleobacter necessarius gen. nov., sp. nov., an obligately endosymbiotic bacterium living in the cytoplasm of Euplotes aediculatus. Int J Syst Bacteriol 37:456–457

    Article  Google Scholar 

  59. Fritsche TR, Horn M, Wagner M, Herwig RP, Schleifer KH, Gautom RK (2000) Phylogenetic diversity among geographically dispersed Chlamydiales endosymbionts recovered from clinical and environmental isolates of Acanthamoeba spp. Appl Environ Microbiol 66:2613–2619

    Article  PubMed  CAS  Google Scholar 

  60. Corsaro D, Thomas V, Goy G, Venditti D, Radek R, Greub G (2007) CandidatusRhabdochlamydia crassificans’, an intracellular bacterial pathogen of the cockroach Blatta orientalis (Insecta: Blattodea). Syst Appl Microbiol 30:221–228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

R. Costa was supported by the Soil Biotechnology Foundation and by the Portuguese Foundation of Science and Technology (FCT). T. Keller-Costa received a research fellowship from the Federation of European Microbiological Societies (FEMS) to perform this work. We thank Dr. Joana B.T. Xavier for the identification of the sponge specimens collected in this study. We are grateful to the late Niels Cox and Albert Ellens for their assistance during sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Costa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Location (arrow in a) and satellite image (b), and limnological parameters (c) of the Vinkeveense Plassen lake Utrecht, The Netherlands, measured on sampling day at 8 m depth. The arrow in b shows the E. fluviatilis sampling location (DOCX 589 kb)

Figure S2

Phylogenetic inference of Planctomycetes 16S rRNA gene sequences by Maximum Likelihood (ML), with sequences retrieved in this study highlighted in bold. Values in brackets give the number of clone sequences from this study, if more than one, in each tree leaf. Closest relatives to all E. fluviatilis and lake water sequences have been included in the analysis. Numbers at tree nodes are bootstrap values calculated in ML analysis, and values ≥70% are shown. Scale bar: number of nucleotide substitutions per site (GIF 51 kb)

High resolution image (EPS 185 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, R., Keller-Costa, T., Gomes, N.C.M. et al. Evidence for Selective Bacterial Community Structuring in the Freshwater Sponge Ephydatia fluviatilis . Microb Ecol 65, 232–244 (2013). https://doi.org/10.1007/s00248-012-0102-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0102-2

Keywords

Navigation