Skip to main content
Log in

Parameterized complexity of three edge contraction problems with degree constraints

  • Original Article
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

For any graph class \(\mathcal{H}\), the \(\mathcal{H}\)-Contraction problem takes as input a graph \(G\) and an integer \(k\), and asks whether there exists a graph \(H\in \mathcal{H}\) such that \(G\) can be modified into \(H\) using at most \(k\) edge contractions. We study the parameterized complexity of \(\mathcal{H}\)-Contraction for three different classes \(\mathcal{H}\): the class \(\mathcal{H}_{\le d}\) of graphs with maximum degree at most \(d\), the class \(\mathcal{H}_{=d}\) of \(d\)-regular graphs, and the class of \(d\)-degenerate graphs. We completely classify the parameterized complexity of all three problems with respect to the parameters \(k\), \(d\), and \(d+k\). Moreover, we show that \(\mathcal{H}\)-Contraction admits an \(O(k)\) vertex kernel on connected graphs when \(\mathcal{H}\in \{\mathcal{H}_{\le 2},\mathcal{H}_{=2}\}\), while the problem is \(\mathsf{W}[2]\)-hard when \(\mathcal{H}\) is the class of \(2\)-degenerate graphs and hence is expected not to admit a kernel at all. In particular, our results imply that \(\mathcal{H}\)-Contraction admits a linear vertex kernel when \(\mathcal{H}\) is the class of cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Asano, T., Hirata, T.: Edge-contraction problems. J. Comput. Syst. Sci. 26(2), 197–208 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Belmonte, R., Golovach, P. A., van ’t Hof, P., Paulusma, D.: Parameterized complexity of two edge contraction problems with degree constraints. In: IPEC 2013, LNCS 8246, pp. 16–27. Springer, Berlin (2013)

  3. Brouwer, A.E., Veldman, H.J.: Contractibility and NP-completeness. J. Graph Theory 11, 71–79 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, L.: Parameterized complexity of cardinality constrained optimization problems. Comput. J. 51(1), 102–121 (2008)

    Article  Google Scholar 

  5. Cai, L., Chen, J.: On the amount of nondeterminism and the power of verifying. SIAM J. Comput. 26, 733–750 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: On the structure of parameterized problems in NP. Inf. Comput. 123, 38–49 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cai, L., Guo, C.: Contracting few edges to remove forbidden induced subgraphs. In: IPEC 2013, LNCS 8246, pp. 97–109. Springer, Berlin (2013)

  8. Cai, L., Guo, C.: Contracting graphs to split graphs and threshold graphs. Manuscript, arXiv:1310.5786

  9. Chen, Y., Flum, J., Grohe, M.: Machine-based methods in parameterized complexity theory. Theor. Comput. Sci. 339, 167–199 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diestel, R.: Graph Theory (Electronic Edition). Springer, Berlin (2005)

  11. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)

    Book  Google Scholar 

  12. Fellows, M.R., Guo, J., Moser, H., Niedermeier, R.: A generalization of Nemhauser and Trotter’s local optimization theorem. J. Comput. Syst. Sci. 77, 1141–1158 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fellows, M.R., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of multiple-interval problems. Theor. Comput. Sci. 410, 53–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)

    Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman and Co., New York (1979)

    MATH  Google Scholar 

  16. Golovach, P.A., van ’t Hof, P., Paulusma, D.: Obtaining planarity by contracting few edges. Theor. Comput. Sci. 476, 38–46 (2013)

  17. Golovach, P.A., Kamiński, M., Paulusma, D., Thilikos, D.M.: Increasing the minimum degree of a graph by contractions. Theor. Comput. Sci. 481, 74–84 (2013)

    Article  MATH  Google Scholar 

  18. Guillemot, S., Marx, D.: A faster FPT algorithm for bipartite contraction. Inf. Process. Lett. 113(22–24), 906–912 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heggernes, P., van ’t Hof, P., Lévêque, B., Lokshtanov, D., Paul, C.: Contracting graphs to paths and trees. Algorithmica 68(1), 109–132 (2014)

  20. Heggernes, P., van ’t Hof, P., Lévêque, B., Lokshtanov, D., Paul, C.: Contracting chordal graphs and bipartite graphs to paths and trees. Discret. Appl. Math. 164(2), 444–449 (2014)

  21. Heggernes, P., van ’t Hof, P., Lokshtanov, D., Paul, C.: Obtaining a bipartite graph by contracting few edges. SIAM J. Discret. Math. 27(4), 2143–2156 (2013)

  22. Ito, T., Kaminski, M., Paulusma, D., Thilikos, D.M.: Parameterizing cut sets in a graph by the number of their components. Theor. Comput. Sci. 412, 6340–6350 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20, 219–230 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lokshtanov, D., Misra, N., Saurabh, S.: On the hardness of eliminating small induced subgraphs by contracting edges. In: IPEC 2013, LNCS 8246, pp. 243–254. Springer, Berlin (2013)

  25. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–768 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Marx, D., O’Sullivan, B., Razgon, I.: Finding small separators in linear time via treewidth reduction. ACM Trans. Algorithms 9(4), 30 (2013)

    Article  MathSciNet  Google Scholar 

  27. Mathieson, L.: The parameterized complexity of editing graphs for bounded degeneracy. Theor. Comput. Sci. 411(34–36), 3181–3187 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mathieson, L., Szeider, S.: Editing graphs to satisfy degree constraints: a parameterized approach. J. Comput. Syst. Sci. 78, 179–191 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced subgraphs. J. Discret. Algorithms 7, 181–190 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  31. Nishimura, N., Ragde, P., Thilikos, D.M.: Fast fixed-parameter tractable algorithms for nontrivial generalizations of vertex cover. Discret. Appl. Math. 152, 229–245 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Paz, A., Moran, S.: Nondeterministic polynomial optimization problems and their approximations. Theor. Comput. Sci. 15, 251–277 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. J. Comput. Syst. Sci. 67, 757–771 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Thomassé, S.: A \(4k^2\) kernel for feedback vertex set. ACM Trans. Algorithms 6(2), 32:1–32:8 (2010)

  35. Yannakakis, M.: Edge-deletion problems. SIAM J. Comput. 10(2), 297–309 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Marcin Kamiński and Dimitrios Thilikos for fruitful discussions on the topic. We also thank the three anonymous referees of the conference version of this paper for insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pim van ’t Hof.

Additional information

The research leading to these results has received funding from the Research Council of Norway (197548/F20), EPSRC (EP/G043434/1 and EP/K025090/1), the Royal Society (JP100692), and the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement No. 267959. A preliminary version of this paper has appeared in the proceedings of IPEC 2013 [2].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belmonte, R., Golovach, P.A., van ’t Hof, P. et al. Parameterized complexity of three edge contraction problems with degree constraints. Acta Informatica 51, 473–497 (2014). https://doi.org/10.1007/s00236-014-0204-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00236-014-0204-z

Navigation