Skip to main content

Advertisement

Log in

In Situ Investigation of Peptide–Lipid Interaction Between PAP248–286 and Model Cell Membranes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Sum frequency generation vibrational spectroscopy (SFG) was utilized to investigate the interaction between PAP248–286 and the two lipid bilayer systems. The present study also provides spectroscopic evidence to confirm that, although PAP248–286 is unable to penetrate into the hydrophobic core of the lipid bilayers, it is capable of interacting more intimately with the fluid-phase POPG/POPC than with the gel-phase DPPG/DPPC lipid bilayer. The helical structure content of lipid-bound PAP248–286 was also observed to be high, in contrast to the results previously reported using nuclear magnetic resonance (NMR). Collectively, our SFG data suggest that lipid-bound PAP248–286 actually resembles its structure in 50 % 2,2,2-trifluoroethanol better than the structure when the peptide binds to SDS micelles. This present study questions the use of SDS micelles as the model membrane for NMR studies of PAP248–286 due to its protein denaturing activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnold F, Schnell J, Zirafi O, Sturzel C, Meier C, Weil T, Standker L, Forssmann WG, Roan NR, Greene WC, Kirchhoff F, Munch J (2012) Naturally occurring fragments from two distinct regions of the prostatic acid phosphatase form amyloidogenic enhancers of HIV infection. J Virol 86:1244–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baio JE, Weidner T, Ramey D, Pruzinsky L, Castner DG (2013) Probing the orientation of electrostatically immobilized cytochrome C by time of flight secondary ion mass spectrometry and sum frequency generation spectroscopy. Biointerphases 8:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Belkin MA, Kulakov TA, Ernst KH, Yan L, Shen YR (2000) Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality. Phys Rev Lett 85:4474–4477

    Article  CAS  PubMed  Google Scholar 

  • Brender JR, Hartman K, Gottler LM, Cavitt ME, Youngstrom DW, Ramamoorthy A (2009) Helical conformation of the SEVI precursor peptide PAP(248-286), a dramatic enhancer of HIV infectivity, promotes lipid aggregation and fusion. Biophys J 97:2474–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brender JR, Nanga RPR, Popovych N, Soong R, Macdonald PM, Ramamoorthy A (2011) The amyloidogenic SEVI precursor, PAP248-286, is highly unfolded in solution despite an underlying helical tendency. Bba-Biomembranes 1808:1161–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XY, Wang J, Kristalyn CB, Chen Z (2007) Real-time structural investigation of a lipid bilayer during its interaction with melittin using sum frequency generation vibrational spectroscopy. Biophys J 93:866–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding B, Soblosky L, Nguyen K, Geng JQ, Yu XL, Ramamoorthy A, Chen Z (2013) Physiologically-relevant modes of membrane interactions by the human antimicrobial peptide, LL-37, revealed by SFG experiments. Sci Rep-UK 3:1854

    Google Scholar 

  • Easterhoff D, DiMaio JTM, Doran TM, Dewhurst S, Nilsson BL (2011) Enhancement of HIV-1 infectivity by simple, self-assembling modular peptides. Biophys J 100:1325–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu L, Liu J, Yan ECY (2011) Chiral sum frequency generation spectroscopy for characterizing protein secondary structures at interfaces. J Am Chem Soc 133:8094–8097

    Article  CAS  PubMed  Google Scholar 

  • Haro A, Velez M, Goormaghtigh E, Lago S, Vazquez J, Andreu D, Gasset M (2003) Reconstitution of holin activity with a synthetic peptide containing the 1-32 sequence region of edh, the EJ-1 phage holin. J Biol Chem 278:3929–3936

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Conboy JC (2005) 1,2-diacyl-phosphatidylcholine flip-flop measured directly by sum-frequency vibrational spectroscopy. Biophys J 89:2522–2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauri S, Weidner T, Arnolds H (2014) The structure of insulin at the air/water interface: monomers or dimers? Phys Chem Chem Phys 16:26722–26724

    Article  CAS  PubMed  Google Scholar 

  • Munch J, Rucker E, Standker L, Adermann K, Goffinet C, Schindler M, Wildum S, Chinnadurai R, Rajan D, Specht A, Gimenez-Gallego G, Sanchez PC, Fowler DM, Koulov A, Kelly JW, Mothes W, Grivel JC, Margolis L, Keppler OT, Forssmann WG, Kirchhoff F (2007) Semen-derived amyloid fibrils drastically enhance HIV infection. Cell 131:1059–1071

    Article  PubMed  Google Scholar 

  • Nanga RPR, Brender JR, Vivekanandan S, Popovych N, Ramamoorthy A (2009) NMR structure in a membrane environment reveals putative amyloidogenic regions of the SEVI precursor peptide PAP(248-286). J Am Chem Soc 131:17972–17979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen KT (2015) An electronically enhanced chiral sum frequency generation vibrational spectroscopy study of lipid-bound cytochrome c. Chem Commun 51:195–197

    Article  CAS  Google Scholar 

  • Nguyen KT, Le Clair SV, Ye SJ, Chen Z (2009) Orientation determination of protein helical secondary structures using linear and nonlinear vibrational spectroscopy. J Phys Chem B 113:12169–12180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen KT, King JT, Chen Z (2010a) Orientation Determination of interfacial beta-sheet structures in situ. J Phys Chem B 114:8291–8300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen KT, Soong R, Im SC, Waskell L, Ramamoorthy A, Chen Z (2010b) Probing the spontaneous membrane insertion of a tail-anchored membrane protein by sum frequency generation spectroscopy. J Am Chem Soc 132:15112–15115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen JS, DiMaio JTM, Doran TM, Brown C, Nilsson BL, Dewhurst S (2012) Seminal plasma accelerates semen-derived enhancer of viral infection (SEVI) fibril formation by the prostatic acid phosphatase (PAP(248-286)) peptide. J Biol Chem 287:11842–11849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roan NR, Muller JA, Liu HC, Chu S, Arnold F, Sturzel CM, Walther P, Dong M, Witkowska HE, Kirchhoff F, Munch J, Greene WC (2011) Peptides released by physiological cleavage of semen coagulum proteins form amyloids that enhance HIV infection. Cell Host Microbe 10:541–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusert P, Fischer M, Joos B, Leemann C, Kuster H, Flepp M, Bonhoeffer S, Gunthard HF, Trkola A (2004) Quantification of infectious HIV-1 plasma viral load using a boosted in vitro infection protocol. Virology 326:113–129

    Article  CAS  PubMed  Google Scholar 

  • Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Bba-Biomembr 1666:105–117

    Article  CAS  Google Scholar 

  • Tulumello DV, Deber CM (2009) SDS micelles as a membrane-mimetic environment for transmembrane segments. Biochem-US 48:12096–12103

    Article  CAS  Google Scholar 

  • Volkov V, Bonn M (2013) Structural properties of gp41 fusion peptide at a model membrane interface. J Phys Chem B 117:15527–15535

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chen XY, Clarke ML, Chen Z (2005) Detection of chiral sum frequency generation vibrational spectra of proteins and peptides at interfaces in situ. P Natl Acad Sci USA 102:4978–4983

    Article  CAS  Google Scholar 

  • Wang J, Lee SH, Chen Z (2008) Quantifying the ordering of adsorbed proteins in situ. J Phys Chem B 112:2281–2290

    Article  CAS  PubMed  Google Scholar 

  • Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand E, Marcotte I (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Bba-Biomembr 1808:1957–1974

    Article  CAS  Google Scholar 

  • Weidnerw T, Castner DG (2013) SFG analysis of surface bound proteins: a route towards structure determination. Phys Chem Chem Phys 15:12516–12524

    Article  Google Scholar 

  • Yan ECY, Fu L, Wang ZG, Liu W (2014) Biological macromolecules at interfaces probed by chiral vibrational sum frequency generation spectroscopy. Chem Rev 114:8471–8498

    Article  CAS  PubMed  Google Scholar 

  • Ye SJ, Nguyen KT, Chen Z (2010) Interactions of alamethicin with model cell membranes investigated using sum frequency generation vibrational spectroscopy in real time in situ. J Phys Chem B 114:3334–3340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye SJ, Li HC, Wei F, Jasensky J, Boughton AP, Yang P, Chen Z (2012) Observing a model ion channel gating action in model cell membranes in real time in situ: membrane potential change induced alamethicin orientation change. J Am Chem Soc 134:6237–6243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye SJ, Li HC, Yang WL, Luo Y (2014) Accurate determination of interfacial protein secondary structure by combining interfacial-sensitive amide I and amide III spectral signals. J Am Chem Soc 136:1206–1209

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Jasensky J, Leng C, Del Grosso C, Smith GD, Wilker JJ, Chen Z (2014) Sum frequency generation vibrational spectroscopic studies on buried heterogeneous biointerfaces. Opt Lett 39:2715–2718

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 106.16-2012.67. The author sincerely thanks Dr. Gay Marsden for her generous assistance in the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khoi Tan Nguyen.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, K.T. In Situ Investigation of Peptide–Lipid Interaction Between PAP248–286 and Model Cell Membranes. J Membrane Biol 249, 411–417 (2016). https://doi.org/10.1007/s00232-016-9878-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-016-9878-1

Keywords

Navigation