Skip to main content
Log in

Abelianization of subgroups of reflection groups and their braid groups: an application to Cohomology

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

The final result of this article gives the order of the extension

$$ 1 \longrightarrow P/[P,P]{\mathop{\longrightarrow} \limits^j} B/[P,P] {\mathop{\longrightarrow} \limits^p} W \longrightarrow 1$$

as an element of the cohomology group H 2(W, P/[P, P]) (where B and P stands for the braid group and the pure braid group associated to the complex reflection group W). To obtain this result, we first refine Stanley-Springer’s theorem on the abelianization of a reflection group to describe the abelianization of the stabilizer N H of a hyperplane H. The second step is to describe the abelianization of big subgroups of the braid group B of W. More precisely, we just need a group homomorphism from the inverse image of N H by p (where p: BW is the canonical morphism) but a slight enhancement gives a complete description of the abelianization of p −1(W′) where W′ is a reflection subgroup of W or the stabilizer of a hyperplane. We also suggest a lifting construction for every element of the centralizer of a reflection in W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bessis, D.: Finite complex reflection arrangements are k(π,1). arXiv:math/ 0610777v3 [math.GT], (2006)

  2. Bessis, D.: Garside categories, periodic loops and cyclic sets. arXiv:math/ 0610778v1 [math.GR], (2006)

  3. Broué, M.: Introduction to complex reflection groups and their braid groups. Springer, Berlin, LNM 1988, (2010)

  4. Broué M., Malle G., Rouquier R.: Complex reflection groups, braid groups, hecke algebras. J. Reine und Angew. Math. 500, 127–190 (1998)

    MATH  Google Scholar 

  5. Brown, K.S.: Cohomology of groups, Springer, New York, GTM 87, (1982)

  6. Digne F.: Présentation des groupes de tresses purs et de certaines de leurs extensions, Preprint

  7. Geck M., Hiss G., Lübeck F., Malle G., Pfeiffer G.: CHEVIE—A system for computing and processing generic character tables. Appl. Algebra Engrg. Comm. Comput. 7, 175–210 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Marin I.: Reflection groups acting on their hyperplanes. J. Algebra 322, 2848–2860 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Orlik P., Solomon L.: Combinatorics and topology of complements of hyperplanes. Invent. Math. 56, 167–189 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  10. Schönert, M. (ed.): GAP—Groups, algorithms, and programming, version 3 release 4 patchlevel 4, Lehrstuhl D für Mathematik, RWTH Aachen, Germany, (1995)

  11. Shephard G.C., Todd J.A.: Finite unitary reflection groups. Canad. J. Maths. VI, 274–304 (1954)

    Article  MathSciNet  Google Scholar 

  12. Springer, T.A.: Invariant theory, Springer, Berlin LNM 585, (1977)

  13. Steinberg R.: Differential equations invariant under finite reflection groups. Trans. Amer. Math. Soc. 112(3), 392–400 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  14. Stanley R.: Relative invariants of finite groups generated by pseudoreflections. J. Algebra 49, 134–148 (1977)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Beck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, V. Abelianization of subgroups of reflection groups and their braid groups: an application to Cohomology. manuscripta math. 136, 273–293 (2011). https://doi.org/10.1007/s00229-011-0438-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-011-0438-9

Mathematics Subject Classification (2000)

Navigation