Skip to main content
Log in

Lower Bounds for Tropical Circuits and Dynamic Programs

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Tropical circuits are circuits with Min and Plus, or Max and Plus operations as gates. Their importance stems from their intimate relation to dynamic programming algorithms. The power of tropical circuits lies somewhere between that of monotone boolean circuits and monotone arithmetic circuits. In this paper we present some lower bounds arguments for tropical circuits, and hence, for dynamic programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. 1 There is nothing special about the term “tropical”. Simply, this term is used in honor of Imre Simon who lived in Sao Paulo (south tropic). Tropical algebra and tropical geometry are now intensively studied topics in mathematics.

  2. 2 Usually, polynomials of more than one variable are called multivariate, but we will omit this for shortness.

  3. 3 We will always denote circuits as upright letters F,G,H,…, and their produced polynomials by italic versions F,G,H,….

References

  1. Alon, N., Boppana, R.: The monotone circuit complexity of boolean functions. Combinatorica 7 (1), 1–22 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alon, N., Chung, F.R.K.: Explicit constructions of linear sized tolerant networks. Discrete Math. 72, 15–19 (1989)

    Article  MathSciNet  Google Scholar 

  3. Andreev, A.E.: On a method for obtaining lower bounds for the complexity of individual monotone functions. Soviet Math. Dokl. 31 (3), 530–534 (1985)

    MATH  Google Scholar 

  4. Andreev, A.E.: A method for obtaining efficient lower bounds for monotone complexity. Algebra and Logics 26 (1), 1–18 (1987)

    Article  MATH  Google Scholar 

  5. Baur, W., Strassen, V.: The complexity of partial derivatives. Theoret. Comput. Sci. 22, 317–330 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bellman, R.: On a routing problem. Quarterly of Appl. Math. 16, 87–90 (1958)

    MATH  Google Scholar 

  7. Floyd, R.W.: Algorithm 97, shortest path. Comm. ACM 5, 345 (1962)

    Article  Google Scholar 

  8. Fomin, S., Grigoriev, D., Koshevoy, G.A.: Subtraction-free complexity and cluster transformations. CoRR, abs/1307.8425 (2013)

  9. Ford, L.R.: Network flow theory. Technical Report P-923, The Rand Corp. (1956)

  10. Gashkov, S.B.: On one method of obtaining lower bounds on the monotone complexity of polynomials. Vestnik MGU, Series 1 Mathematics, Mechanics 5, 7–13 (1987)

    MathSciNet  Google Scholar 

  11. Gashkov, S.B., Gashkov, I.B.: On the complexity of calculation of differentials and gradients. Discrete Math. Appl. 15 (4), 327–350 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gashkov, S.B., Sergeev, I.S.: A method for deriving lower bounds for the complexity of monotone arithmetic circuits computing real polynomials. Math. Sbornik 203 (10), 33–70 (2012)

    Article  MathSciNet  Google Scholar 

  13. Goldmann, M., Håstad, J.: Monotone circuits for connectivity have depth log n to the power (2-o(1)). SIAM J. Comput. 27, 1283–1294 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hyafil, L.: On the parallel evaluation of multivariate polynomials. SIAM J. Comput. 8 (2), 120–123 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jerrum, M., Snir, M.: Some exact complexity results for straight-line computations over semirings. J. ACM 29 (3), 874–897 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jordan, J.W., Livné, R.: Ramanujan local systems on graphs. Topology 36 (5), 1007–1–24 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jukna, S.: Combinatorics of monotone computations. Combinatorica 9 (1), 1–21 (1999). Preliminary version: ECCC Report Nr. 26, 1996

    Google Scholar 

  18. Jukna, S.: Expanders and time-restricted branching programs. Theoret. Comput. Sci. 409 (3), 471–476 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jukna, S.: Boolean Function Complexity: Advances and Frontiers. Springer-Verlag, Berlin Heidelberg New York (2012)

    Book  Google Scholar 

  20. Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require super-logarithmic depth. SIAM J. Discrete Math. 3, 255–265 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kasim-Zade, O.M.: On arithmetical complexity of monotone polynomials. In Proceedings of All-Union Conference on Theoretical Problems in Cybernetics, Vol. 1, pp 68–69 (1986). (in Russian)

  22. Kasim-Zade, O.M.: On the complexity of monotone polynomials. In Proceedings of All-Union Seminar on Discrete Mathematics and its Application, pp 136–138 (1986). (in Russian)

  23. Kerr, L.R: The effect of algebraic structure on the computation complexity of matrix multiplications. PhD thesis, Cornell University, Ithaca (1970)

  24. Krieger, M.P.: On the incompressibility of monotone DNFs. Theory of Comput. Syst. 41 (2), 211–231 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kuznetsov, S.E.: Monotone computations of polynomials and schemes without null-chains. In Proceedings of 8-th All-Union Conference on Theoretical Problems in Cybernetics, Vol. 1, pp 108–109 (1985). (in Russian)

  26. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8 (3), 261–277 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  27. Margulis, G.A.: Explicit constructions of concentrators. Problems of Inf. Transm., 323–332 (1975)

  28. Mehlhorn, K.: Some remarks on Boolean sums. Acta Informatica 12, 371–375 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  29. Mehlhorn, K., Galil, Z.: Monotone switching circuits and boolean matrix product. Computing 16 (1-2), 99–111 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  30. Moore, E.F.: The shortest path through a maze. In Proceedings Internat. Sympos. Switching Theory, pp 285–292. Harvard University Press 1959, Cambridge (1957)

  31. Morgenstern, M.: Existence and explicit constructions of q+1 regular Ramanujan graphs for every prime power q. J. Comb. Theory Ser. B 62 (1), 44–62 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  32. Nechiporuk, E.I.: On the topological principles of self-correction. Problemy Kibernetiki 21, 5–102 (1969). English translation in: Systems Theory Res. 21 1970, 1–99

    MATH  Google Scholar 

  33. Paterson, M.: Complexity of monotone networks for boolean matrix product. Theoret. Comput. Sci. 1 (1), 13–20 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  34. Pippenger, N.: On another Boolean matrix. Theor. Comput. Sci. 11, 49–56 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  35. Raz, R., Yehudayoff, A.: Multilinear formulas, maximal-partition discrepancy and mixed-sources extractors. J. Comput. Syst. Sci. 77 (1), 167–190 (2011). Preliminary version in: Proceedings of 49th FOCS, 2008

    Article  MATH  MathSciNet  Google Scholar 

  36. Razborov, A.A.: A lower bound on the monotone network complexity of the logical permanent. Math. Notes Acad. of Sci. USSR 37 (6), 485–493 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  37. Razborov, A.A.: Lower bounds for the monotone complexity of some boolean functions. Soviet Math. Dokl. 31, 354–357 (1985)

    MATH  Google Scholar 

  38. Schnorr, C.P.: A lower bound on the number of additions in monotone computations. Theor. Comput. Sci. 2 (3), 305–315 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  39. Sergeev, I.S.: On the complexity of the gradient of a rational function. J. Appl. and Industrial Math. 2 (3), 385–396 (2008)

    Article  MathSciNet  Google Scholar 

  40. Shamir, E., Snir, M.: On the depth complexity of formulas. Math. Syst. Theory 13, 301–322 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  41. Shpilka, A., Yehudayoff, A.: Arithmetic circuits: A survey of recent results and open questions. Foundations and Trends in Theoret. Comput. Sci. 5 (3-4), 207–388 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  42. Tiwari, P., Tompa, M.: A direct version of Shamir and Snir’s lower bounds on monotone circuit depth. Inf. Process. Lett. 49 (5), 243–248 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  43. Valiant, L.G.: Negation can be exponentially powerful. Theor. Comput. Sci. 12, 303–314 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  44. Valiant, L.G., Skyum, S., Berkowitz, S., Rackoff, C.: Fast parallel computation of polynomials using few processors. SIAM J. Comput. 12 (4), 641–644 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  45. Warshall, S.: A theorem on boolean matrices. J. ACM 9, 11–12 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  46. Vassilevska Williams, V., Williams, R.: Subcubic equivalences between path, matrix and triangle problems. In: Proceedings of 51th FOCS, pp. 645–654 (2010)

  47. Yao, A.C.: A lower bound for the monotone depth of connectivity. In: Proceedings of 35th FOCS, pp. 302–308 (1994)

Download references

Acknowledgments

I am thankful to Dima Grigoriev, Georg Schnitger and Igor Sergeev for interesting discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stasys Jukna.

Additional information

Research supported by the DFG grant SCHN 503/6-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jukna, S. Lower Bounds for Tropical Circuits and Dynamic Programs. Theory Comput Syst 57, 160–194 (2015). https://doi.org/10.1007/s00224-014-9574-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-014-9574-4

Keywords

Navigation