Skip to main content
Log in

Minimizing Rosenthal Potential in Multicast Games

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

A multicast game is a network design game modelling how selfish non-cooperative agents build and maintain one-to-many network communication. There is a special source node and a collection of agents located at corresponding terminals. Each agent is interested in selecting a route from the special source to its terminal minimizing the cost. The mutual influence of the agents is determined by a cost sharing mechanism, which evenly splits the cost of an edge among all the agents using it for routing. In this paper we provide several algorithmic and complexity results on finding a Nash equilibrium minimizing the value of Rosenthal potential. Let n be the number of agents and G be the communication network. We show that for a given strategy profile s and integer k ≥ 0, there is a local search algorithm which in time n O(k)⋅|G|O(1) finds a better strategy profile, if there is any, in a k-exchange neighbourhood of s. In other words, the algorithm decides if Rosenthal potential can be decreased by changing strategies of at most k agents. The running time of our local search algorithm is essentially tight: unless F P T = W[1], for any function f(k), searching of the k-neighbourhood cannot be done in time f(k)⋅|G|O(1). We also show that an equilibrium with minimum potential can be found in 3n⋅|G|O(1) time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The number of arithmetic operations used by our algorithms does not depend on the size of the input weights, i.e. the claimed running times are in the unit-cost model.

References

  1. Aarts, E.H.L., Lenstra, J.K: Local Search in Combinatorial Optimization. Princeton University Press (1997)

  2. Albers, S.: On the value of coordination in network design. SIAM J. Comput. 38, 2273–2302 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38, 1602–1623 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Anshelevich, E., Dasgupta, A., Tardos, É., Wexler, T.: Near-optimal network design with selfish agents. Theory Comput. 4, 77–109 (2008)

    Article  MathSciNet  Google Scholar 

  5. Chekuri, C., Chuzhoy, J., Lewin-Eytan, L., Naor, J., Orda, A.: Non-cooperative multicast and facility location games. IEEE J. Sel. Areas Commun. 25, 1193–1206 (2007)

    Article  Google Scholar 

  6. Chen, H.-L., Roughgarden, T., Valiant, G: Designing network protocols for good equilibria. SIAM J. Comput. 39, 1799–1832 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, Texts in Computer Science (2013)

    Book  MATH  Google Scholar 

  8. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1, 195–207 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  9. Epstein, A., Feldman, M., Mansour, Y: Strong equilibrium in cost sharing connection games. In: Proceedings 8th ACM Conference on Electronic Commerce (EC-2007). ACM, 84–92 (2007)

  10. Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F.A., Saurabh, S., Villanger, Y.: Local search: Is brute-force avoidable?. J. Comput. Syst. Sci. 78, 707–719 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410, 53–61 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer-Verlag, Berlin (2006)

    Google Scholar 

  13. Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via cost sharing: Simpler and better approximation algorithms for network design. J. ACM 54, 11 (2007)

    Article  MathSciNet  Google Scholar 

  14. Gupta, A., Srinivasan, A., Tardos, É.: Cost-sharing mechanisms for network design. Algorithmica 50, 98–119 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hardy, G.H., Polya, G., Littlewood, J.E.: Inequalities. The University press, Cambridge [Eng.] (1934)

    Google Scholar 

  16. Kleinberg, J., Tardos, E.: Algorithm design. Addison-Wesley, Boston (2005)

    Google Scholar 

  17. Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. Comput. Sci. Rev. 3, 65–69 (2009)

    Article  MATH  Google Scholar 

  18. Marx, D.: Local search. Parameterized Complexity Newsl. 3, 7–8 (2008)

    Google Scholar 

  19. Michiels, W., Aarts, E.H.L., Korst, J.: Theoretical Aspects of Local Search. Springer-Verlag (2007)

  20. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford University Press (2006)

  21. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973)

    Article  MATH  Google Scholar 

  22. Roughgarden, T., Sundararajan, M.: Quantifying inefficiency in cost-sharing mechanisms. J. ACM, 56 (2009)

  23. Roughgarden, T., Tardos, É.: How bad is selfish routing?. J. ACM 49, 236–259 (2002)

    Article  MathSciNet  Google Scholar 

  24. Szeider, S.: The parameterized complexity of k-flip local search for sat and max sat. Discret. Optim. 8, 139–145 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 26795. This work is also supported by EPSRC (EP/G043434/1), Royal Society (JP100692), and Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), project: ’Space and Time Efficient Structural Improvements of Dynamic Programming Algorithms’. A preliminary version of this paper appeared as an extended abstract in the proceedings of ICALP 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr A. Golovach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomin, F.V., Golovach, P.A., Nederlof, J. et al. Minimizing Rosenthal Potential in Multicast Games. Theory Comput Syst 57, 81–96 (2015). https://doi.org/10.1007/s00224-014-9573-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-014-9573-5

Keywords

Navigation