Skip to main content

Advertisement

Log in

The Anabolic Effect of Teriparatide is Undermined by Low Levels of High-Density Lipoprotein Cholesterol

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

An Erratum to this article was published on 15 September 2013

Abstract

Intermittent parathyroid hormone (PTH) administration has a potent ability to increase bone mass, regardless of underlying conditions or species. A recent study using LDLR −/− mice showed that the anabolic effect of PTH was blunted by hyperlipidemia, whereas PTH anabolism was rescued by enhancement of high-density lipoprotein cholesterol (HDL-C) function. We conducted a retrospective longitudinal study to determine whether lipid profiles also affect the anabolic effect of intermittent PTH treatment in humans. Fifty-two patients (8 males and 44 females, ages 38–85 years) with severe osteoporosis who had been treated with teriparatide (TPTD, recombinant human PTH(1–34) for 12 months were studied at Severance Hospital, Yonsei University. C-telopeptide (CTX) and osteocalcin (OCN) were measured at 0, 3, and 12 months; and total cholesterol, triglycerides, and HDL-C were measured at baseline. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry at 0 and 12 months. Lumbar spine BMD increased significantly after 12 months of treatment with TPTD (10.0 ± 9.3 %, p < 0.001). Initial 3-month changes in CTX and OCN levels revealed positive correlations with the increase in lumbar BMD (r = 0.546, p = 0.001 and r = 0.500, p = 0.006, respectively). Moreover, percentage change in lumbar BMD at 12 months showed a negative correlation with baseline total cholesterol (r = −0.438, p = 0.009) and a positive correlation with HDL-C (r = 0.498, p = 0.016). A smaller 3-month increase in OCN and a lower HDL-C level at baseline were associated with a smaller lumbar BMD increase after TPTD treatment, even after adjustment for age, sex, and other confounding factors (β = 0.462, p = 0.031 for ΔOCN and β = 0.670, p = 0.004 for HDL-C). Plasma levels of lipids, especially HDL-C, seem to be associated with the extent of osteoanabolic effects of TPTD in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BMD:

Bone mineral density

BMI:

Body mass index

CTX:

C-telopeptide of type I collagen

DXA:

Dual-energy X-ray absorptiometry

GIOP:

Glucocorticoid-induced osteoporosis

HDL-C:

High-density lipoprotein cholesterol

LDL-C:

Low-density lipoprotein cholesterol

LDLR:

Low-density lipoprotein receptor

OCN:

Osteocalcin

PTH:

Parathyroid hormone

RANKL:

Receptor activator of nuclear factor-β ligand

SERM:

Selective estrogen receptor modulator

TPTD:

Teriparatide

25(OH)D:

25-Hydroxy vitamin D

BP:

Bisphosphonate

References

  1. Hodsman AB, Bauer DC, Dempster DW, Dian L, Hanley DA, Harris ST, Kendler DL, McClung MR, Miller PD, Olszynski WP, Orwoll E, Yuen CK (2005) Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev 26:688–703

    Article  CAS  PubMed  Google Scholar 

  2. Hodsman AB, Hanley DA, Ettinger MP, Bolognese MA, Fox J, Metcalfe AJ, Lindsay R (2003) Efficacy and safety of human parathyroid hormone-(1–84) in increasing bone mineral density in postmenopausal osteoporosis. J Clin Endocrinol Metab 88:5212–5220

    Article  CAS  PubMed  Google Scholar 

  3. Orwoll ES, Scheele WH, Paul S, Adami S, Syversen U, Diez-Perez A, Kaufman JM, Clancy AD, Gaich GA (2003) The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J Bone Miner Res 18:9–17

    Article  CAS  PubMed  Google Scholar 

  4. Lane NE, Sanchez S, Modin GW, Genant HK, Pierini E, Arnaud CD (1998) Parathyroid hormone treatment can reverse corticosteroid-induced osteoporosis: results of a randomized controlled clinical trial. J Clin Invest 102:1627–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Simmons HA, Pirie CM, Thompson DD, Ke HZ (1998) Parathyroid hormone (1–34) increased total body bone mass in aged female rats. J Pharmacol Exp Ther 286:341–344

    CAS  PubMed  Google Scholar 

  6. Rhee Y, Namgung R, Park DH, Lee HC, Huh GB, Lim SK (2002) The effects of recombinant human parathyroid hormone, rhPTH(1–84), on bone mass in undernourished rats. J Endocrinol 174:419–425

    Article  CAS  PubMed  Google Scholar 

  7. Misof BM, Roschger P, Cosman F, Kurland ES, Tesch W, Messmer P, Dempster DW, Nieves J, Shane E, Fratzl P, Klaushofer K, Bilezikian J, Lindsay R (2003) Effects of intermittent parathyroid hormone administration on bone mineralization density in iliac crest biopsies from patients with osteoporosis: a paired study before and after treatment. J Clin Endocrinol Metab 88:1150–1156

    Article  CAS  PubMed  Google Scholar 

  8. Jiang Y, Zhao JJ, Mitlak BH, Wang O, Genant HK, Eriksen EF (2003) Recombinant human parathyroid hormone (1–34) [teriparatide] improves both cortical and cancellous bone structure. J Bone Miner Res 18:1932–1941

    Article  CAS  PubMed  Google Scholar 

  9. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441

    Article  CAS  PubMed  Google Scholar 

  10. Rubin MR, Bilezikian JP (2003) The anabolic effects of parathyroid hormone therapy. Clin Geriatr Med 19:415–432

    Article  PubMed  Google Scholar 

  11. Body JJ, Gaich GA, Scheele WH, Kulkarni PM, Miller PD, Peretz A, Dore RK, Correa-Rotter R, Papaioannou A, Cumming DC, Hodsman AB (2002) A randomized double-blind trial to compare the efficacy of teriparatide [recombinant human parathyroid hormone (1–34)] with alendronate in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 87:4528–4535

    Article  CAS  PubMed  Google Scholar 

  12. Kurland ES, Cosman F, McMahon DJ, Rosen CJ, Lindsay R, Bilezikian JP (2000) Parathyroid hormone as a therapy for idiopathic osteoporosis in men: effects on bone mineral density and bone markers. J Clin Endocrinol Metab 85:3069–3076

    CAS  PubMed  Google Scholar 

  13. Huang MS, Morony S, Lu J, Zhang Z, Bezouglaia O, Tseng W, Tetradis S, Demer LL, Tintut Y (2007) Atherogenic phospholipids attenuate osteogenic signaling by BMP-2 and parathyroid hormone in osteoblasts. J Biol Chem 282:21237–21243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jilka RL (2007) Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40:1434–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang MS, Lu J, Ivanov Y, Sage AP, Tseng W, Demer LL, Tintut Y (2008) Hyperlipidemia impairs osteoanabolic effects of PTH. J Bone Miner Res 23:1672–1679

    Article  CAS  PubMed  Google Scholar 

  16. Sage AP, Lu J, Atti E, Tetradis S, Ascenzi MG, Adams DJ, Demer LL, Tintut Y (2010) Hyperlipidemia induces resistance to PTH bone anabolism in mice via oxidized lipids. J Bone Miner Res 26(6):1197–1206

    Article  Google Scholar 

  17. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    CAS  PubMed  Google Scholar 

  18. Boonen S, Marin F, Obermayer-Pietsch B, Simoes ME, Barker C, Glass EV, Hadji P, Lyritis G, Oertel H, Nickelsen T, McCloskey EV, EUROFORS Investigators (2008) Effects of previous antiresorptive therapy on the bone mineral density response to two years of teriparatide treatment in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 93:852–860

    Article  CAS  PubMed  Google Scholar 

  19. Obermayer-Pietsch BM, Marin F, McCloskey EV, Hadji P, Farrerons J, Boonen S, Audran M, Barker C, Anastasilakis AD, Fraser WD, Nickelsen T, EUROFORS Investigators (2008) Effects of two years of daily teriparatide treatment on BMD in postmenopausal women with severe osteoporosis with and without prior antiresorptive treatment. J Bone Miner Res 23:1591–1600

    Article  CAS  PubMed  Google Scholar 

  20. Hodsman AB, Kisiel M, Adachi JD, Fraher LJ, Watson PH (2000) Histomorphometric evidence for increased bone turnover without change in cortical thickness or porosity after 2 years of cyclical hPTH(1–34) therapy in women with severe osteoporosis. Bone 27:311–318

    Article  CAS  PubMed  Google Scholar 

  21. Dempster DW, Cosman F, Kurland ES, Zhou H, Nieves J, Woelfert L, Shane E, Plavetic K, Muller R, Bilezikian J, Lindsay R (2001) Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J Bone Miner Res 16:1846–1853

    Article  CAS  PubMed  Google Scholar 

  22. Lane NE, Sanchez S, Genant HK, Jenkins DK, Arnaud CD (2000) Short-term increases in bone turnover markers predict parathyroid hormone–induced spinal bone mineral density gains in postmenopausal women with glucocorticoid-induced osteoporosis. Osteoporos Int 11:434–442

    Article  CAS  PubMed  Google Scholar 

  23. Bauer DC, Garnero P, Bilezikian JP, Greenspan SL, Ensrud KE, Rosen CJ, Palermo L, Black DM (2006) Short-term changes in bone turnover markers and bone mineral density response to parathyroid hormone in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 91:1370–1375

    Article  CAS  PubMed  Google Scholar 

  24. Yamaguchi T, Sugimoto T, Yano S, Yamauchi M, Sowa H, Chen Q, Chihara K (2002) Plasma lipids and osteoporosis in postmenopausal women. Endocr J 49:211–217

    Article  CAS  PubMed  Google Scholar 

  25. Jeong IK, Cho SW, Kim SW, Choi HJ, Park KS, Kim SY, Lee HK, Cho SH, Oh BH, Shin CS (2010) Lipid profiles and bone mineral density in pre- and postmenopausal women in Korea. Calcif Tissue Int 87:507–512

    Article  CAS  PubMed  Google Scholar 

  26. Navab M, Berliner JA, Watson AD, Hama SY, Territo MC, Lusis AJ, Shih DM, Van Lenten BJ, Frank JS, Demer LL, Edwards PA, Fogelman AM (1996) The yin and yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler Thromb Vasc Biol 16:831–842

    Article  CAS  PubMed  Google Scholar 

  27. Hirasawa H, Tanaka S, Sakai A, Tsutsui M, Shimokawa H, Miyata H, Moriwaki S, Niida S, Ito M, Nakamura T (2007) ApoE gene deficiency enhances the reduction of bone formation induced by a high-fat diet through the stimulation of p53-mediated apoptosis in osteoblastic cells. J Bone Miner Res 22:1020–1030

    Article  CAS  PubMed  Google Scholar 

  28. Parhami F, Jackson SM, Tintut Y, Le V, Balucan JP, Territo M, Demer LL (1999) Atherogenic diet and minimally oxidized low density lipoprotein inhibit osteogenic and promote adipogenic differentiation of marrow stromal cells. J Bone Miner Res 14:2067–2078

    Article  CAS  PubMed  Google Scholar 

  29. Tintut Y, Morony S, Demer LL (2004) Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo. Arterioscler Thromb Vasc Biol 24:e6–e10

    Article  CAS  PubMed  Google Scholar 

  30. Tintut Y, Parhami F, Tsingotjidou A, Tetradis S, Territo M, Demer LL (2002) 8-Isoprostaglandin E2 enhances receptor-activated NFkappa B ligand (RANKL)-dependent osteoclastic potential of marrow hematopoietic precursors via the cAMP pathway. J Biol Chem 277:14221–14226

    Article  CAS  PubMed  Google Scholar 

  31. Mody N, Parhami F, Sarafian TA, Demer LL (2001) Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 31:509–519

    Article  CAS  PubMed  Google Scholar 

  32. Parhami F, Morrow AD, Balucan J, Leitinger N, Watson AD, Tintut Y, Berliner JA, Demer LL (1997) Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler Thromb Vasc Biol 17:680–687

    Article  CAS  PubMed  Google Scholar 

  33. Sellmeyer DE, Black DM, Palermo L, Greenspan S, Ensrud K, Bilezikian J, Rosen CJ (2007) Hetereogeneity in skeletal response to full-length parathyroid hormone in the treatment of osteoporosis. Osteoporos Int 18:973–979

    Article  CAS  PubMed  Google Scholar 

  34. Lossdorfer S, Gotz W, Jager A (2005) PTH(1–34) affects osteoprotegerin production in human PDL cells in vitro. J Dent Res 84:634–638

    Article  CAS  PubMed  Google Scholar 

  35. Lossdorfer S, Gotz W, Jager A (2010) PTH(1–34)-induced changes in RANKL and OPG expression by human PDL cells modify osteoclast biology in a co-culture model with RAW 264.7 cells. Clin Oral Investig 15(6):941–952

    Article  PubMed  Google Scholar 

  36. Graham LS, Parhami F, Tintut Y, Kitchen CM, Demer LL, Effros RB (2009) Oxidized lipids enhance RANKL production by T lymphocytes: implications for lipid-induced bone loss. Clin Immunol 133:265–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brodeur MR, Brissette L, Falstrault L, Moreau R (2008) HDL3 reduces the association and modulates the metabolism of oxidized LDL by osteoblastic cells: a protection against cell death. J Cell Biochem 105:1374–1385

    Article  CAS  PubMed  Google Scholar 

  38. Buga GM, Frank JS, Mottino GA, Hendizadeh M, Hakhamian A, Tillisch JH, Reddy ST, Navab M, Anantharamaiah GM, Ignarro LJ, Fogelman AM (2006) D-4F decreases brain arteriole inflammation and improves cognitive performance in LDL receptor-null mice on a Western diet. J Lipid Res 47:2148–2160

    Article  CAS  PubMed  Google Scholar 

  39. Navab M, Anantharamaiah GM, Hama S, Hough G, Reddy ST, Frank JS, Garber DW, Handattu S, Fogelman AM (2005) D-4F and statins synergize to render HDL antiinflammatory in mice and monkeys and cause lesion regression in old apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 25:1426–1432

    Article  CAS  PubMed  Google Scholar 

  40. Miller NE, La Ville A, Crook D (1985) Direct evidence that reverse cholesterol transport is mediated by high-density lipoprotein in rabbit. Nature 314:109–111

    Article  CAS  PubMed  Google Scholar 

  41. Kim M, Na W, Sohn C (2013) Correlation between vitamin D and cardiovascular disease predictors in overweight and obese Koreans. J Clin Biochem Nutr 52:167–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Kyung Jeon.

Additional information

Yun Kyung Jeon and Kyoung Min Kim contributed equally to this study.

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, Y.K., Kim, K.M., Kim, K.J. et al. The Anabolic Effect of Teriparatide is Undermined by Low Levels of High-Density Lipoprotein Cholesterol. Calcif Tissue Int 94, 159–168 (2014). https://doi.org/10.1007/s00223-013-9772-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-013-9772-0

Keywords

Navigation