Skip to main content
Log in

A model for combined targeting and tracking tasks in computer applications

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Current models for targeted-tracking are discussed and shown to be inadequate as a means of understanding the combined task of tracking, as in the Drury’s paradigm, and having a final target to be aimed at, as in the Fitts’ paradigm. It is shown that the task has to be split into components that are, in general, performed sequentially and have a movement time component dependent on the difficulty of the individual component of the task. In some cases, the task time may be controlled by the Fitts’ task difficulty, and in others, it may be dominated by the Drury’s task difficulty. Based on an experiment carried out that captured movement time in combinations of visually controlled and ballistic movements, a model for movement time in targeted-tracking was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Accot J, Zhai S (1997) Beyond Fitts’ law: models for trajectory-based HCI tasks. In: CHI 1997, proceedings of ACM conference on human factors in computing systems, pp 295–302. doi:10.1145/258549.258760

  • Blinch J, Cameron BD, Hodges NJ, Chua R (2012) Do preparation or control processes result in the modulation to Fitts’ law for movements to targets with placeholders? Exp Brain Res 223:505–515. doi:10.1007/s00221-012-3277-3

    Article  PubMed  Google Scholar 

  • Bollen KA, Jackman RW (1990) Regression diagnostics: an expository treatment of outliers and influential cases. In: Fox J, Long JS (eds) Modern methods of data analysis. Sage, Newbury Park, pp 257–291

    Google Scholar 

  • Dennerlein JT, Martin DB, Hasser C (2000) Force-feedback improves performance for steering and combined steering-targeting tasks. In: CHI 2000, proceedings SIGCHI conference on human factors in computing systems, The Hague, The Netherlands, pp 423–429. doi:10.1145/332040.332469

  • Drury C (1971) Movements with lateral constraint. Ergonomics 14:293–305. doi:10.1080/00140137108931246

    Article  PubMed  CAS  Google Scholar 

  • Fitts P (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47:381–391

    Article  PubMed  CAS  Google Scholar 

  • Fitts PM, Peterson JR (1964) Information capacity of discrete motor responses. J Exp Psychol 67:103–112

    Article  PubMed  CAS  Google Scholar 

  • Gan K-C, Hoffmann ER (1988) Geometrical conditions for ballistic and visually-controlled movements. Ergonomics 31:829–839. doi:10.1080/00140138808966724

    Article  PubMed  CAS  Google Scholar 

  • Hick WE (1952) On the rate of gain of information. J Exp Psychol 4:11–26. doi:10.1080/17470215208416600

    Google Scholar 

  • Hoffmann ER (1981) An ergonomic approach to predetermined motion time systems. In: Proceedings of the 9th national conference, Institute of Industrial Engineers, Australia. Singapore, pp 30–47

  • Hoffmann ER (2009) Review of models for restricted-path movements. Int J Ind Ergonom 39:578–589. doi:10.1016/j.ergon.2008.02.007

    Article  Google Scholar 

  • Hoffmann ER (2013) Which version/variation of Fitts’ law? A critique of information-theory models. J Motor Behav 45:205–215. doi:10.1080/00222895.2013.778815

    Article  Google Scholar 

  • Hoffmann ER, Lim JTA (1997) Concurrent manual-decision tasks. Ergonomics 40:293–318. doi:10.1080/001401397188161

    Article  Google Scholar 

  • Hong S-K, Ryu S (2007) Human performance model for combined steering-targeting tasks. In: EPCE’07, proceedings of the 7th international conference on engineering psychology and cognitive ergonomics, pp 306–315

  • Jax SA, Roosenbaum DA, Vaughan J (2007) Extending Fitts’ Law to manual obstacle avoidance. Exp Brain Res 180:775–779. doi:10.1007/s00221-007-0996-y

    Article  PubMed  Google Scholar 

  • Johnson RA, Wichern DW (2007) Applied multivariate statistical analysis, 4th edn. Pearson Prentice Hall, New Jersey, pp 187–191

    Google Scholar 

  • Kulikov S, Stuerzlinger W (2006) Targeted steering motions. In: CHI EA ‘06 CHI ‘06, extended abstracts on human factors in computing systems, Montreal, Canada. doi:10.1145/1125451.1125640

  • Kvalseth TO (1973) Fitts’ law for manipulative temporal motor responses with and without path constraints. Percept Mot Skills 37:427–431

    Article  PubMed  CAS  Google Scholar 

  • Kvalseth TO (1975) Note on Fitts’ law for manipulative temporal motor responses with path constraints. Percept Mot Skills 40:411–414

    Article  PubMed  CAS  Google Scholar 

  • Kvalseth TO (1977) A generalised model of temporal motor control subject to movement constraints. Ergonomics 20:41–50

    Article  Google Scholar 

  • Kvalseth TO (1978) Quantitative models of motor responses subject to longitudinal, lateral and preview constraints. Hum Factors 20:35–39

    PubMed  CAS  Google Scholar 

  • Leong CKW, Hoffmann ER, Good MC (2011) Ballistic movements on data-entry keypads. Int J Ind Ergonom 41:180–190. doi:10.1016/j.ergon.2011.01.004

    Article  Google Scholar 

  • Macuga KL, Papailiou AP, Frey SH (2012) Motor imagery of tool use: relationship to actual use and adherence to Fitts’ law across tasks. Exp Brain Res 218:169–179. doi:10.1007/s00221-012-3004-0

    Article  PubMed  Google Scholar 

  • Meyer DE, Abrams RA, Kornblum S, Wright CE, Smith JEK (1988) Optimality in human motor performance: ideal control of rapid aimed movements. Psychol Rev 95:340–370. doi:10.1037/0033-295X.95.3.340

    Article  PubMed  CAS  Google Scholar 

  • Thibbotuwawa N, Hoffmann ER, Goonetilleke RS (2012) Open-loop and feedback-controlled mouse cursor movements in linear paths. Ergonomics 55:476–488. doi:10.1080/00140139.2011.644587

    Article  PubMed  Google Scholar 

  • Vaughan J, Barany DA, Sali AW, Jax SA, Rosenbaum DA (2010) Extending Fitts’ Law to three-dimensional obstacle-avoidance movements: support for the posture-based motion planning model. Exp Brain Res 207:133–138. doi:10.1007/s00221-010-2431-z

    Article  PubMed  Google Scholar 

  • Vaughan J, Barany DA, Rios T (2012) The cost of moving with the left hand. Exp Brain Res 220:11–22

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra S. Goonetilleke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senanayake, R., Hoffmann, E.R. & Goonetilleke, R.S. A model for combined targeting and tracking tasks in computer applications. Exp Brain Res 231, 367–379 (2013). https://doi.org/10.1007/s00221-013-3700-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3700-4

Keywords

Navigation