Skip to main content
Log in

Noncommutative Principal Bundles Through Twist Deformation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct noncommutative principal bundles deforming principal bundles with a Drinfeld twist (2-cocycle). If the twist is associated with the structure group then we have a deformation of the fibers. If the twist is associated with the automorphism group of the principal bundle, then we obtain noncommutative deformations of the base space as well. Combining the two twist deformations we obtain noncommutative principal bundles with both noncommutative fibers and base space. More in general, the natural isomorphisms proving the equivalence of a closed monoidal category of modules and its twist related one are used to obtain new Hopf–Galois extensions as twists of Hopf–Galois extensions. A sheaf approach is also considered, and examples presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aschieri P., Bonechi F.: On the noncommutative geometry of twisted spheres. Lett. Math. Phys. 59, 133–156 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aschieri P., Dimitrijevic M., Meyer F., Wess J.: Noncommutative geometry and gravity. Class. Quant. Grav. 23, 1883–1911 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Aschieri P., Castellani L.: R-matrix formulation of the quantum inhomogeneous groups \({ISO_{q,r}(N)}\) and \({ISp_{q,r}(N)}\). Lett. Math. Phys. 36, 197–211 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Aschieri P., Schenkel A.: Noncommutative connections on bimodules and Drinfeld twist deformation. Adv. Theor. Math. Phys. 18, 513–612 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barnes G.E., Schenkel A., Szabo R.J.: Nonassociative geometry in quasi-Hopf representation categories I: bimodules and their internal homomorphisms. J. Geom. Phys. 89, 111–152 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Barnes G.E., Schenkel A., Szabo R.J.: Nonassociative geometry in quasi-Hopf representation categories II: connections and curvature. J. Geom. Phys. 106, 234–255 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bieliavsky, P., Gayral, V.: Deformation Quantization for Actions of Kählerian Lie Groups, vol. 236. Mem. Amer. Math. Soc., Providence (2015)

  8. Brain S., Landi G.: Moduli spaces of non-commutative instantons: gauging away non-commutative parameters. Q. J. Math. 63, 41–86 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brain S., Majid S.: Quantisation of twistor theory by cocycle twist. Commun. Math. Phys. 284, 713–774 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Brzeziński, T., Janelidze, G., Maszczyk, T.: Galois structures. In: Hajac, P.M. (ed.) Lecture Notes on Noncommutative Geometry and Quantum Groups. http://www.mimuw.edu.pl/~pwit/toknotes/toknotes

  11. Brzeziński, T., Majid, S.: Quantum group gauge theory on quantum spaces. Commun. Math. Phys. 157, 591–638 (1993) [Erratum 167 (1995) 235]

  12. Cirio L.S., Pagani C.: A 4-sphere with non-central radius and its instanton sheaf. Lett. Math. Phys. 105, 169–197 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Connes A., Dubois-Violette M.: Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples. Commun. Math. Phys. 230, 539–579 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Connes A., Landi G.: Noncommutative manifolds: the instanton algebra and isospectral deformations. Commun. Math. Phys. 221, 141–159 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Da̧browski L., Grosse H., Hajac P.M.: Strong connections and Chern–Connes pairing in the Hopf–Galois theory. Commun. Math. Phys. 220, 301–331 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Doi Y.: Braided bialgebras and quadratic bialgebras. Commun. Algebra 21, 1731–1749 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Drinfeld V.G.: On constant quasiclassical solutions of the Yang–Baxter quantum equation. Sov. Math. Dokl. 28, 667–671 (1983)

    MATH  Google Scholar 

  18. Drinfeld V.G.: Hopf algebras and the quantum Yang–Baxter equation. Sov. Math. Dokl. 32, 254–258 (1985)

    Google Scholar 

  19. Dubois-Violette M., Masson T.: On the first order operators in bimodules. Lett. Math. Phys. 37, 467–474 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Kassel C.: Quantum Groups. Springer, New York (1995)

    Book  MATH  Google Scholar 

  21. Klimyk A., Schmüdgen K.: Quantum Groups and Their Representations. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  22. Kreimer H.F., Takeuchi M.: Hopf algebras and Galois extensions of an algebra. Indiana Univ. Math. J. 30, 675–692 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Landi, G., van Suijlekom, W.: Principal fibrations from noncommutative spheres. Commun. Math. Phys. 260, 203–225 (2005)

  24. Landi G., Suijlekom W.: Noncommutative instantons from twisted conformal symmetries. Commun. Math. Phys. 271, 591–634 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Majid S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  26. Montgomery S.: Hopf Algebras and Their Actions on Rings. AMS, Providence (1993)

    Book  MATH  Google Scholar 

  27. Montgomery S., Schneider H.J.: Krull relations in Hopf Galois extensions: lifting and twisting. J. Algebra 288, 364–383 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mourad J.: Linear connections in noncommutative geometry. Class. Quant. Grav. 12, 965–974 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Ostrik V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8, 177–206 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pflaum M.: Quantum groups on fibre bundles. Commun. Math. Phys. 166, 279–315 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Reshetikhin N.: Multiparameter quantum groups and twisted quasitriangular Hopf algebras. Lett. Math. Phys. 20, 331–335 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Rieffel, M.: Deformation Quantization for Actions of R d, vol. 106, p. 506. Mem. Amer. Math. Soc., Providence (1993)

  33. Schauenburg P., Schneider H.J.: On generalized Hopf Galois extensions. J. Pure Appl. Algebra 202, 168–194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schneider H.J.: Principal homogeneous spaces for arbitrary Hopf algebras. Isr. J. Math. 72, 167–195 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Varilly J.: Quantum symmetry groups of noncommutative spheres. Commun. Math. Phys. 221, 511–523 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Aschieri.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aschieri, P., Bieliavsky, P., Pagani, C. et al. Noncommutative Principal Bundles Through Twist Deformation. Commun. Math. Phys. 352, 287–344 (2017). https://doi.org/10.1007/s00220-016-2765-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2765-x

Navigation