Skip to main content
Log in

A Solution Space for a System of Null-State Partial Differential Equations: Part 3

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This article is the third of four that completely and rigorously characterize a solution space \({\mathcal{S}_N}\) for a homogeneous system of 2N + 3 linear partial differential equations (PDEs) in 2N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE κ ). The system comprises 2N null-state equations and three conformal Ward identities that govern CFT correlation functions of 2N one-leg boundary operators. In the first two articles (Flores and Kleban, in Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404.0035, 2014), we use methods of analysis and linear algebra to prove that dim \({\mathcal{S}_N\leq C_N}\), with C N the Nth Catalan number.

Extending these results, we prove in this article that dim \({\mathcal{S}_N=C_N}\) and \({\mathcal{S}_N}\) entirely consists of (real-valued) solutions constructed with the CFT Coulomb gas (contour integral) formalism. In order to prove this claim, we show that a certain set of C N such solutions is linearly independent. Because the formulas for these solutions are complicated, we prove linear independence indirectly. We use the linear injective map of Lemma 15 in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012) to send each solution of the mentioned set to a vector in \({\mathbb{R}^{C_N}}\), whose components we find as inner products of elements in a Temperley–Lieb algebra. We gather these vectors together as columns of a symmetric \({C_N\times C_N}\) matrix, with the form of a meander matrix. If the determinant of this matrix does not vanish, then the set of C N Coulomb gas solutions is linearly independent. And if this determinant does vanish, then we construct an alternative set of C N Coulomb gas solutions and follow a similar procedure to show that this set is linearly independent. The latter situation is closely related to CFT minimal models. We emphasize that, although the system of PDEs arises in CFT in away that is typically non-rigorous, our treatment of this system here and in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404.0035, 2014; Commun Math Phys, arXiv:1405.2747, 2014) is completely rigorous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flores, S.M., Kleban, P.: A solution space for a system of null-state partial differential equations I. Commun. Math. Phys. Preprint: arXiv:1212.2301 (2012, to appear)

  2. Flores, S.M., Kleban, P.: A solution space for a system of null-state partial differential equations II. Commun. Math. Phys. Preprint: arXiv:1404.0035 (2014, to appear)

  3. Flores, S.M., Kleban, P.: A solution space for a system of null-state partial differential equations IV. Commun. Math. Phys. Preprint: arXiv:1405.2747 (2014, to appear)

  4. Belavin A.A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Di Francesco P., Mathieu R., Sénéchal D.: Conformal Field Theory. Springer, New York (1997)

    Book  MATH  Google Scholar 

  6. Henkel M.: Conformal Invariance and Critical Phenomena. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  7. Bauer M., Bernard D., Kytölä K.: Multiple Schramm-Löwner evolutions and statistical mechanics martingales. J. Stat. Phys. 120, 1125 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Dubédat J.: Commutation relations for SLE. Comm. Pure Appl. Math. 60, 1792–1847 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Graham, K.: On multiple Schramm-Löwner evolutions. J. Stat. Mech. P03008 (2007)

  10. Kozdron M.J., Lawler G.: The configurational measure on mutually avoiding SLE paths. Fields Inst. Commun. 50, 199–224 (2007)

    MathSciNet  Google Scholar 

  11. Sakai K.: Multiple Schramm-Löwner evolutions for conformal field theories with Lie algebra symmetries. Nucl. Phys. B 867, 429–447 (2013)

    Article  ADS  MATH  Google Scholar 

  12. Bauer M., Bernard D.: Conformal field theories of stochastic Löwner evolutions. Commun. Math. Phys. 239, 493–521 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Dotsenko V.S.: Critical behavior and associated conformal algebra of the Z 3 Potts model. Nucl. Phys. B 235, 54–74 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  14. Gruzberg I.A.: Stochastic geometry of critical curves, Schramm-Löwner evolutions, and conformal field theory. J. Phys. A 39, 12601–12656 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Rushkin I., Bettelheim E., Gruzberg I.A., Wiegmann P.: Critical curves in conformally invariant statistical systems. J. Phys. A 40, 2165–2195 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Cardy J.: Critical percolation in finite geometries. J. Phys. A Math. Gen. 25, L201–L206 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Cardy J.: Conformal invariance and surface critical behavior. Nucl. Phys. B 240, 514–532 (1984)

    Article  ADS  Google Scholar 

  18. Grimmett G.: Percolation. Springer, New York (1989)

    MATH  Google Scholar 

  19. Baxter R.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  20. Wu F.Y.: The Potts model. Rev. Mod. Phys. 54, 235–268 (1982)

    Article  ADS  Google Scholar 

  21. Fortuin C.M., Kasteleyn P.W.: On the random cluster model I. Introduction and relation to other models. Physica D 57, 536–564 (1972)

    MathSciNet  Google Scholar 

  22. Stanley H.E.: Dependence of critical properties on dimensionality of spins. Phys. Rev. Lett. 20, 589–592 (1968)

    Article  ADS  Google Scholar 

  23. Ziff R.M., Cummings P.T., Stell G.: Generation of percolation cluster perimeters by a random walk. J. Phys. A Math. Gen. 17, 3009–3017 (1984)

    Article  ADS  Google Scholar 

  24. Lawler G.: A self-avoiding walk. Duke Math. J. 47, 655–694 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  25. Schramm O., Sheffield S.: The harmonic explorer and its convergence to SLE4. Ann. Probab. 33, 2127–2148 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Weinrib A., Trugman S.A.: A new kinetic walk and percolation perimeters. Phys. Rev. B 31, 2993–2997 (1985)

    Article  ADS  Google Scholar 

  27. Madra G., Slade G.: The Self-Avoiding Walk. Birkhäuser, Boston (1996)

    Book  Google Scholar 

  28. Dotsenko V.S., Fateev V.A.: Conformal algebra and multipoint correlation functions in 2D statistical models. Nucl. Phys. B 240, 312–348 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  29. Dotsenko, V.S., Fateev, V.A.: Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central charge \({c\leq1}\). Nucl. Phys. B 251, 691–673 (1985)

  30. Di Francesco P., Golinelli O., Guitter E.: Meanders and the Temperley–Lieb algebra. Commun. Math. Phys. 186, 1–59 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Di Francesco P., Guitter E.: Geometrically constrained statistical systems on regular and random lattices: from foldings to meanders. Phys. Reports 415, 1–88 (2005)

    Article  ADS  Google Scholar 

  32. Di Francesco P.: Meander determinants. Commun. Math. Phys. 191, 543–583 (1998)

    Article  ADS  MATH  Google Scholar 

  33. Di Francesco, P.: Truncated meanders. Recent developments. In: Jing N., Misra K. (eds.) Quantum Affine Algebras and Related Topics. American Mathematical Society, pp. 135–161 (1999)

  34. Flores, S.M., Simmons, J.J.H., Kleban, P., Ziff, R.M.: Partition functions and crossing probabilities for critical systems inside polygons. In preparation

  35. Flores, S.M., Simmons, J.J.H., Kleban, P.: Multiple-SLEκ connectivity weights for rectangles, hexagons, and octagons. In preparation

  36. Kang, N.G., Makarov, N.: Gaussian free field and conformal field theory. Amer. Math. Soc. Asterisque series (2013)

  37. Simmons J.J.H., Kleban P., Flores S.M., Ziff R.M.: Cluster densities at 2-D critical points in rectangular geometries. J. Phys. A Math. Theor. 44, 385002 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  38. Flores S.M., Kleban P., Ziff R.M.: Cluster pinch-point densities in polygons. J. Phys A Math. Theor. 45, 505002 (2012)

    Article  MathSciNet  Google Scholar 

  39. Simmons J.J.H.: Logarithmic operator intervals in the boundary theory of critical percolation. J. Phys. A Math. Theor. 46, 494015 (2013)

    Article  MathSciNet  Google Scholar 

  40. Kytölä, K., Peltola, E.: Conformally covariant boundary correlation functions with a quantum group. Preprint: arXiv:1408.1384 (2014)

  41. Dubédat J.: Euler integrals for commuting SLEs. J. Stat. Phys. 123, 1183–1218 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Kodaira K.: Introduction to Complex Analysis. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  43. Whittaker E.T., Watson G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1940)

    Google Scholar 

  44. Smirnov S.: Towards conformal invariance of 2D lattice models. Proc. Int. Congr. Math. 2, 1421–1451 (2006)

    Google Scholar 

  45. Duminil-Copin, H., Smirnov, S.: Conformal invariance of lattice models. In: Ellwood, D., Newman, C., Sidoravicius, V., Werner, W. (eds.) Probability and Statistical Physics in Two and More Dimensions, Clay Mathematics Proceedings, vol. 15, pp. 213–276 (2012)

  46. Temperley N., Lieb E.: Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem. Proc. R. Soc. A 322, 251–280 (1971)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Kytölä, K., Peltola, E.: Pure geometries of multiple SLEs (In preparation, 2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Flores.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores, S.M., Kleban, P. A Solution Space for a System of Null-State Partial Differential Equations: Part 3. Commun. Math. Phys. 333, 597–667 (2015). https://doi.org/10.1007/s00220-014-2190-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2190-y

Keywords

Navigation