Skip to main content
Log in

A Solution Space for a System of Null-State Partial Differential Equations: Part 2

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This article is the second of four that completely and rigorously characterize a solution space \({\mathcal{S}_N}\) for a homogeneous system of 2N + 3 linear partial differential equations in 2N variables that arises in conformal field theory (CFT) and multiple Schramm–Löwner evolution (SLE\({_\kappa}\)). The system comprises 2N null-state equations and three conformal Ward identities which govern CFT correlation functions of 2N one-leg boundary operators. In the first article (Flores and Kleban, Commun Math Phys, arXiv:1212.2301, 2012), we use methods of analysis and linear algebra to prove that dim \({\mathcal{S}_N \leq C_N}\) , with C N the Nth Catalan number. The analysis of that article is complete except for the proof of a lemma that it invokes. The purpose of this article is to provide that proof.

The lemma states that if every interval among (x 2, x 3), (x 3, x 4),…,(x 2N-1, x 2N ) is a two-leg interval of \({F \in \mathcal{S}_N}\) (defined in Flores and Kleban, Commun Math Phys, arXiv:1212.2301, 2012), then F vanishes. Proving this lemma by contradiction, we show that the existence of such a nonzero function implies the existence of a non-vanishing CFT two-point function involving primary operators with different conformal weights, an impossibility. This proof (which is rigorous in spite of our occasional reference to CFT) involves two different types of estimates, those that give the asymptotic behavior of F as the length of one interval vanishes, and those that give this behavior as the lengths of two intervals vanish simultaneously. We derive these estimates by using Green functions to rewrite certain null-state PDEs as integral equations, combining other null-state PDEs to obtain Schauder interior estimates, and then repeatedly integrating the integral equations with these estimates until we obtain optimal bounds. Estimates in which two interval lengths vanish simultaneously divide into two cases: two adjacent intervals and two non-adjacent intervals. The analysis of the latter case is similar to that for one vanishing interval length. In contrast, the analysis of the former case is more complicated, involving a Green function that contains the Jacobi heat kernel as its essential ingredient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flores, S.M., Kleban, P.: A solution space for a system of null-state partial differential equations I. Commun. Math. Phys. Preprint: arXiv:1212.2301 (2012, to appear)

  2. Flores, S.M., Kleban, P.: A solution space for a system of null-state partial differential equations III. Commun. Math. Phys. Preprint: arXiv:1303.7182 (2013, to appear)

  3. Flores, S.M., Kleban, P.: A solution space for a system of null-state partial differential equations IV. Commun. Math. Phys. Preprint: arXiv:1405.2747 (2014, to appear)

  4. Belavin A.A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Di Francesco P., Mathieu R., Sénéchal D.: Conformal Field Theory. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  6. Henkel M.: Conformal Invariance and Critical Phenomena. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  7. Dubédat J.: Commutation relations for SLE. Comm. Pure Appl. Math. 60, 1792–1847 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bauer M., Bernard D., Kytölä K.: Multiple Schramm–Löwner evolutions and statistical mechanics martingales. J. Stat. Phys. 120, 1125 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Graham, K.: On multiple Schramm–Löwner evolutions. J. Stat. Mech. P03008 (2007)

  10. Kozdron M.J., Lawler G.: The configurational measure on mutually avoiding SLE paths. Fields Inst. Commun. 50, 199–224 (2007)

    MathSciNet  Google Scholar 

  11. Sakai K.: Multiple Schramm–Löwner evolutions for conformal field theories with Lie algebra symmetries. Nucl. Phys. B 867, 429–447 (2013)

    Article  ADS  MATH  Google Scholar 

  12. Cardy J.: Critical percolation in finite geometries. J. Phys. A Math. Gen. 25, L201–L206 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Gruzberg I.A.: Stochastic geometry of critical curves, Schramm–Löwner evolutions, and conformal field theory. J. Phys. A 39, 12601–12656 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Rushkin I., Bettelheim E., Gruzberg I.A., Wiegmann P.: Critical curves in conformally invariant statistical systems. J. Phys. A 40, 2165–2195 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Cardy J.: Conformal invariance and surface critical behavior. Nucl. Phys. B 240, 514–532 (1984)

    Article  ADS  Google Scholar 

  16. Bauer M., Bernard D.: Conformal field theories of stochastic Löwner evolutions. Comm. Math. Phys. 239, 493–521 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Dotsenko V.S.: Critical behavior and associated conformal algebra of the Z3 Potts model. Nucl. Phys. B 235, 54–74 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  18. Wu F.Y.: The Potts model. Rev. Mod. Phys. 54, 235–268 (1982)

    Article  ADS  Google Scholar 

  19. Baxter R.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  20. Stanley H.E.: Dependence of critical properties on dimensionality of spins. Phys. Rev. Lett. 20, 589–592 (1968)

    Article  ADS  Google Scholar 

  21. Fortuin C.M., Kasteleyn P.W.: On the random cluster model I. Introduction and relation to other models. Physica 57, 536–564 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  22. Grimmett G.: Percolation. Springer, Berlin (1989)

    MATH  Google Scholar 

  23. Lawler G.: A Self-Avoiding Walk. Duke Math. J. 47, 655–694 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Madra G., Slade G.: The Self-Avoiding Walk. Birkhäuser, Boston (1996)

    Book  Google Scholar 

  25. Schramm O., Sheffield S.: The harmonic explorer and its convergence to SLE4. Ann. Probab. 33, 2127–2148 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Weinrib A., Trugman S.A.: A new kinetic walk and percolation perimeters. Phys. Rev. B 31, 2993–2997 (1985)

    Article  ADS  Google Scholar 

  27. Ziff R.M., Cummings P.T., Stell G.: Generation of percolation cluster perimeters by a random walk. J. Phys. A Math. Gen. 17, 3009–3017 (1984)

    Article  ADS  Google Scholar 

  28. Dotsenko V.S., Fateev V.A.: Conformal algebra and multipoint correlation functions in 2D statistical models. Nucl. Phys. B 240, 312–348 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  29. Dotsenko V.S., Fateev V.A.: Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central charge \({c \leq 1}\) . Nucl. Phys. B 251, 673–691 (1985)

    Article  MathSciNet  Google Scholar 

  30. Dubédat J.: Euler integrals for commuting SLEs. J. Stat. Phys. 123, 1183–1218 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Nowak A., Sjögren P.: Riesz transforms for Jacobi expansions. J. Anal. Math. 104, 341–369 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nowak A., Sjögren P.: Sharp estimates of the Jacobi heat kernel. Stud. Math. 218, 219–244 (2013)

    Article  MATH  Google Scholar 

  33. Knizhnik V.G., Polyakov A.M., Zamolodchikov A.B.: Fractal structure of 2d—quantum gravity. Mod. Phys. Lett. A 3, 819–826 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  34. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order, p. 93. Springer, Berlin (1983)

    Book  Google Scholar 

  35. Horn R., Johnson C.R.: Matrix Analysis, p. 439. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  36. Folland, G.: Fourier Analysis and its Applications. Wadsworth & Brooks/Cole Advanced Books and Software, Pacific Grove (1992)

  37. Szegö, G.: Orthogonal Polynomials, 4th edn, vol. XXIII. American Mathematical Society Colloquium Publications, Providence (1975)

  38. Andersson, D.: Estimates of the Spherical and Ultraspherical Heat Kernel. Masters thesis, Chalmers University of Technology, Gothenburg (2013)

  39. Karlin S., McGregor J.: Classical diffusion processes and total positivity. J. Math. Anal. Appl. 1, 163–183 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gasper G.: Positivity and the convolution structure for Jacobi series. Ann. Math. 93, 112–118 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  41. Bochner S.: Positivity of the heat kernel for ultraspherical polynomials and similar functions. Arch. Ration. Mech. Anal. 70, 211–217 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  42. Roach G.F.: Green’s Functions, p. 248. Cambridge University Press, Cambridge (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Flores.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores, S.M., Kleban, P. A Solution Space for a System of Null-State Partial Differential Equations: Part 2. Commun. Math. Phys. 333, 435–481 (2015). https://doi.org/10.1007/s00220-014-2185-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2185-8

Keywords

Navigation