Skip to main content
Log in

Orbit Approach to Separation of Variables in \({\mathfrak{sl}}\)(3)-Related Integrable Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Using the orbit method we reveal geometric and algebraic meaning of separation of variables for integrable systems on coadjoint orbits of an \({\mathfrak{sl}}\)(3) loop algebra. We consider two types of generic orbits, embedded into a common manifold endowed with two nonsingular Lie-Poisson brackets. We prove that separation of variables on orbits of both types is realized by the same variables of separation. We also construct integrable systems on the orbits: a coupled 3-component nonlinear Schrödinger equation and an isotropic SU(3) Landau–Lifshitz equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sklyanin E.K.: Separation of variables. New trends. Progr. Theor. Phys. Suppl. 118, 35–60 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  2. Kirillov A.A.: Merits and demerits of the orbit method. Bull. Amer. Math. Soc. 36, 433–488 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Adams M.R., Harnad J., Hurtubise J.: Darboux coordinates and Liouville-Arnold integration in loop algebras. Commun. Math. Phys. 155, 385–413 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Adams M.R., Harnad J., Hurtubise J.: Darboux coordinates on coadjoint orbits of Lie algebras. Lett. Math. Phys. 40, 41–57 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blaszak M.: On separability of bi-Hamiltonian chain with degenerated Poisson structures. J. Math. Phys. 39, 3213 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Falqui G., Magri F., Pedroni M., Zubelli J.-P.: A bi-Hamiltonian theory for stationary KdV flows and their separability. Reg. Chaotic. Dyn. 5, 33–51 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Falqui G., Magri F., Tondo G.: Reduction of bi-Hamiltonian systems and separation of variables: an example from the Boussinesq hiererchy. Theor. Math. Phys. 122, 176–192 (2000)

    Article  MathSciNet  Google Scholar 

  8. Falqui G., Pedroni M.: Separation of variables for bi-Hamiltonian systems. Math. Phys. Anal. Geom. 6, 139–179 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Magri, F., Casati, P., Falqui, G., Pedroni, M.: Eight lectures on integrable systems. In: Integrability of Nonlinear Systems. Lecture Notes in Physics, vol. 495, pp. 256–296 (1997)

  10. Harnad J., Hurtubise J.: Multi-Hamiltonian structures for r-matrix systems. J. Math. Phys. 49, 062903 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bernatska J., Holod P.: On separation of variables for integrable equations of soliton type. JNMP 14, 353–374 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Sklyanin E.K.: Separation of variables in the classical integrable SL(3) magnetic chain. Commun. Math. Phys. 150, 181–191 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Scott D.R.D.: Classical functional Bethe ansatz for SL(N): separation of variables for the magnetic chain. J. Math. Phys. 35, 5831–5843 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Gekhtman M.I.: Separation of variables in the classical SL(N) magnetic chain. Commun. Math. Phys. 167, 593–605 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Adler M., Moerbeke P.: Linearization of Hamiltonian systems, Jacobi varieties and representation theory. Adv. Math. 38, 318–379 (1980)

    Article  MATH  Google Scholar 

  16. Fordy A.P., Kulish P.P.: Nonlinear Schrödinger equations and simple Lie algebras. Commun. Math. Phys. 89, 427–443 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Macfarlane A.J., Sudbery A., Weisz P.H.: On Gell-Mann’s λ-matrices, d- and f-tensors, octets, and parametrizations of SU(3). Commun. Math. Phys. 11, 77–90 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  18. Bernatska J., Holod P.: Generalization of Landau-Lifshits equation for isotropic SU(3) magnets. J. Phys. A Math. Theor. 42, 075401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Bernatska.

Additional information

Communicated by N. Reshetikhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernatska, J., Holod, P. Orbit Approach to Separation of Variables in \({\mathfrak{sl}}\)(3)-Related Integrable Systems. Commun. Math. Phys. 333, 905–929 (2015). https://doi.org/10.1007/s00220-014-2176-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2176-9

Keywords

Navigation