Skip to main content
Log in

A Reversible Theory of Entanglement and its Relation to the Second Law

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the manipulation of multipartite entangled states in the limit of many copies under quantum operations that asymptotically cannot generate entanglement. In stark contrast to the manipulation of entanglement under local operations and classical communication, the entanglement shared by two or more parties can be reversibly interconverted in this setting. The unique entanglement measure is identified as the regularized relative entropy of entanglement, which is shown to be equal to a regularized and smoothed version of the logarithmic robustness of entanglement.

Here we give a rigorous proof of this result, which is fundamentally based on a certain recent extension of quantum Stein’s Lemma, giving the best measurement strategy for discriminating several copies of an entangled state from an arbitrary sequence of non-entangled states, with an optimal distinguishability rate equal to the regularized relative entropy of entanglement. We moreover analyse the connection of our approach to axiomatic formulations of the second law of thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Callen H.B.: Thermodynamics and an Introduction to Thermostatistics. John Wiley and Sons, New York (1985)

    MATH  Google Scholar 

  2. Maurer U.M.: Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theo. 39, 733 (1998)

    Article  MathSciNet  Google Scholar 

  3. Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Carathéodory C.: Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann. 67, 355 (1909)

    Article  MathSciNet  Google Scholar 

  5. Giles R.: Mathematical Foundations of Thermodynamics. Pergamon, Oxford (1964)

    MATH  Google Scholar 

  6. Lieb E.H., Yngvason J.: The physics and mathematics of the second law of thermodynamics. Phys. Rept. 310, 1 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Lieb E.H., Yngvason J.: A fresh look at entropy and the second law of thermodynamics. Phys. Today 53, 32 (2000)

    Article  Google Scholar 

  8. Bennett C.H., Bernstein H.J., Popescu S., Schumacher B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  9. Horodecki M., Horodecki P., Horodecki R.: Mixed-State entanglement and distillation: Is there a “Bound” entanglement in nature?. Phys. Rev. Lett. 80, 5239 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Vidal G., Cirac J.I.: Irreversibility in asymptotic manipulations of entanglement. Phys. Rev. Lett. 86, 5803 (2001)

    Article  ADS  Google Scholar 

  11. Yang D., Horodecki M., Horodecki R., Synak-Radtke B.: Irreversibility for all bound entangled states. Phys. Rev. Lett. 95, 190501 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  12. Brandão, F.G.S.L., Plenio, M.B.: A Generalization of Quantum Stein’s Lemma. Commun. Math. Phys. doi:10.1007/s00220-010-1005-z

  13. Hiai F., Petz D.: The proper formula for the relative entropy and its asymptotics in quantum probability. Commun. Math. Phys. 43, 99 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  14. Ogawa T., Nagaoka H.: Strong converse and Stein’s lemma in the quantum hypothesis testing. IEEE Trans. Inf. Theo. 46, 2428 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Brandão F.G.S.L., Plenio M.B.: Entanglement theory and the second law of thermodynamics. Nature Physics 4, 873 (2008)

    Article  ADS  Google Scholar 

  16. Horodecki M.: Quantum entanglement: Reversible path to thermodynamics. Nature Physics 4, 833 (2008)

    Article  ADS  Google Scholar 

  17. Werner R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  18. Popescu S., Rohrlich D.: Thermodynamics and the measure of entanglement. Phys. Rev. A 56, R3319 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  19. Vedral V., Plenio M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619 (1998)

    Article  ADS  Google Scholar 

  20. Horodecki M., Horodecki R.: Are there basic laws of quantum information processing?. Phys. Lett. A 244, 473 (1998)

    Article  ADS  Google Scholar 

  21. Horodecki P., Horodecki R., Horodecki M.: Entanglement and thermodynamical analogies. Acta Phys. Slov. 48, 141 (1998)

    Google Scholar 

  22. Plenio M.B., Vedral V.: Teleportation, entanglement and thermodynamics in the quantum world. Contemp. Phys. 39, 431 (1998)

    Article  ADS  Google Scholar 

  23. Rains, E.M.: Entanglement purification via separable superoperators. http://arxiv.org/abs/quant-ph/9707002v3, 1998

  24. Bennett C.H., DiVincenzo D.P., Fuchs C.A., Mor T., Rains E., Shor P.W., Smolin J.A., Wootters W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  25. Cirac J.I., Dür W., Kraus B., Lewenstein M.: Entangling operations and their implementation using a small amount of entanglement. Phys. Rev. Lett. 86, 544 (2001)

    Article  ADS  Google Scholar 

  26. Virmani S., Huelga S.F., Plenio M.B.: Classical simulatability, entanglement breaking, and quantum computation thresholds. Phys. Rev. A. 71, 042328 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  27. Vedral V., Plenio M.B., Rippin M.A., Knight P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Vidal G., Tarrach R.: Robustness of entanglement. Phys. Rev. A 59, 141 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  29. Harrow A.W., Nielsen M.A.: How robust is a quantum gate in the presence of noise?. Phys. Rev. A 68, 012308 (2003)

    Article  ADS  Google Scholar 

  30. Vedral V., Kashefi E.: Uniqueness of the entanglement measure for bipartite pure states and thermodynamics. Phys. Rev. Lett. 89, 037903 (2002)

    Article  ADS  Google Scholar 

  31. Morikoshi F., Franca Santos M., Vedral V.: Accessibility of physical states and non-uniqueness of entanglement measure. J. Phys. A: Math. Gen. 37, 5887 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Rains E.: A semidefinite program for distillable entanglement. IEEE Trans. Inf. Theo. 47, 2921 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  33. Eggeling T., Vollbrecht K.G.H., Werner R.F., Wolf M.M.: Distillability via protocols respecting the positivity of partial transpose. Phys. Rev. Lett. 87, 257902 (2001)

    Article  ADS  Google Scholar 

  34. Audenaert K.M.R., Plenio M.B., Eisert J.: The entanglement cost under operations preserving the positivity of partial transpose. Phys. Rev. Lett. 90, 027901 (2003)

    Article  ADS  Google Scholar 

  35. Ishizaka S., Plenio M.B.: Entanglement under asymptotic positive-partial-transpose preserving operations. Phys. Rev. A 72, 042325 (2005)

    Article  ADS  Google Scholar 

  36. Horodecki M., Oppenheim J., Horodecki R.: Are the laws of entanglement theory thermodynamical?. Phys. Rev. Lett. 89, 240403 (2002)

    Article  ADS  Google Scholar 

  37. Bennett C.H., Shorm P.W., Smolin J.A., Thapliyal A.V.: Entanglement-assisted classical capacity of noisy quantum channels. Phys. Rev. Lett. 83, 3081 (1999)

    Article  ADS  Google Scholar 

  38. Bennett C.H., Shor P.W., Smolin J.A., Thapliyal A.V.: Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inf. Theo. 48, 2637 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  39. Dieks D.: Communication by EPR devices. Phys. Lett. A 92, 271 (1982)

    Article  ADS  Google Scholar 

  40. Wootters W.K., Zurek W.H.: A Single quantum cannot be cloned. Nature 299, 802 (1982)

    Article  ADS  Google Scholar 

  41. Smith, G., Smolin, J.A., Winter, A.: The quantum capacity with symmetric side channels. IEEE Trans. Info. Theory 54, 9, 4208-4217 (2008)

    Google Scholar 

  42. Smith G.: The private classical capacity with a symmetric side channel and its application to quantum cryptography. Phys. Rev. A 78, 022306 (2008)

    Article  ADS  Google Scholar 

  43. Smith G., Yard J.: Quantum communication with zero-capacity channels. Science 321, 1812 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  44. Vollbrecht K.G.H., Werner R.F.: Entanglement measures under symmetry. Phys. Rev. A 64, 062307 (2001)

    Article  ADS  Google Scholar 

  45. Brandão F.G.S.L.: Quantifying entanglement with witness operators. Phys. Rev. A 72, 022310 (2005)

    Article  ADS  Google Scholar 

  46. Datta N.: Max-relative entropy of entanglement, alias log robustness. Int. J. Quant. Inf. 7, 475 (2009)

    Article  MATH  Google Scholar 

  47. Horodecki M., Horodecki P.: Reduction criterion of separability and limits for a class of protocols of entanglement distillation. Phys. Rev. A 59, 4206 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  48. Donald M.J., Horodecki M.: Continuity of relative entropy of entanglement. Phys. Lett. A 264, 257 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  49. Jonathan D., Plenio M.B.: Entanglement-assisted local manipulation of pure quantum states. Phys. Rev. Lett. 83, 3566 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. Brandão F.G.S.L., Horodecki M., Plenio M.B., Virmani S.: Remarks on the equivalence of full additivity and monotonicity for the entanglement cost. Open Sys. Inf. Dyn. 14, 333 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando G. S. L. Brandão.

Additional information

Communicated by M.B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandão, F.G.S.L., Plenio, M.B. A Reversible Theory of Entanglement and its Relation to the Second Law. Commun. Math. Phys. 295, 829–851 (2010). https://doi.org/10.1007/s00220-010-1003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1003-1

Keywords

Navigation