Skip to main content
Log in

Gold-sputtered Blu-ray discs: simple and inexpensive SERS substrates for sensitive detection of melamine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanostructured gold substrates provide chemically stable, signal-enhancing substrates for the sensitive detection of a variety of compounds through surface-enhanced Raman spectroscopy (SERS). Recent developments in advanced fabrication methods have enabled the manufacture of SERS substrates with repeatable surface nanostructures that provide reproducible quantitative analysis, historically a weakness of the SERS technique. Here, we describe the novel use of gold-sputtered Blu-ray disc surfaces as SERS substrates. The unique surface features and composition of the Blu-ray disc recording surface lead to the formation of gold nano-islands and nanogaps following simple gold sputtering, without any background peaks from the substrate. The SERS performance of this substrate is strong and reproducible with an enhancement factor (EF) of 103 for melamine. A limit of detection (LOD) for this compound of 70 ppb and average reproducibility of ±12 % were achieved. Gold-sputtered Blu-ray discs thus offer an excellent alternative to more exotic gold SERS substrates prepared by advanced, time-consuming and expensive methods.

AFM 3D images of 1-μm2 sections of uncoated and gold-sputtered recordable Blu-ray disc (BD-R) surfaces and the SERS signal obtained on the gold-sputtered surface for a 1000 ppm aqueous solution of melamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moskovits M. Phys Chem Chem Phys. 2013;15:530.

    Article  Google Scholar 

  2. McCreery RL. Raman spectroscopy for chemical analysis. 3rd ed. New York: Wiley; 2000.

    Book  Google Scholar 

  3. Kneipp HK, Itzkan I, Dasari RR, Feld MS. Chem Rev. 1999;99:2957.

    Article  CAS  Google Scholar 

  4. Le Ru EC, Etchegoin PG. Principles of surface-enhanced Raman spectroscopy and related plasmonic effects. Amsterdam: Elsevier; 2009.

    Google Scholar 

  5. Merlen A, Chevallier V, Valmalette JC, Patrone L, Torchio P, Vedraine S, et al. Surf Sci. 2011;605:1214.

    Article  CAS  Google Scholar 

  6. Laurence TA, Braun GB, Reich NO, Moskovits M. Nano Lett. 2012;12(6):2912.

    Article  CAS  Google Scholar 

  7. Aroca R. Surface enhanced vibrational spectroscopy. Chichester: Wiley; 2006.

    Book  Google Scholar 

  8. Fang Y, Seong Y, Dlott DD. Nano Lett. 2012;12:2912.

    Article  Google Scholar 

  9. Ko H, Singamaneni S, Tsukruk VV. Small. 2008;4(10):1576.

    Article  CAS  Google Scholar 

  10. Halas NJ, Lal S, Chang WS, Link S, Nordlander P. Chem Rev. 2011;111(6):3913.

    Article  CAS  Google Scholar 

  11. Guerrini L, Graham D. Chem Soc Rev. 2012;41(21):7085.

    Article  CAS  Google Scholar 

  12. Sinturel C, Vayer M, Morris M, Hillmyer MA. Macromolecules. 2013;46(14):5399.

    Article  CAS  Google Scholar 

  13. Tian Z, Ren B, Wu D. J Phys Chem. 2002;106(37):9463.

    Article  CAS  Google Scholar 

  14. Larmour IA, Graham D. Analyst. 2011;136(19):3831.

    Article  CAS  Google Scholar 

  15. Alvarez-Puebla RA, Liz-Maran LM. Chem Soc Rev. 2012;41(1):43.

    Article  CAS  Google Scholar 

  16. Yin Y, Qiu T, Zhang W, Chu PK. J Mater Res. 2011;26(02):170.

    Article  CAS  Google Scholar 

  17. Fan M, Andrade GF, Brolo AG. Anal Chim Acta. 2011;693(1–2):7.

    Article  CAS  Google Scholar 

  18. Mahajan S, Baumberg JJ, Russell AE, Bartlett PN. Phys Chem Chem Phys. 2007;9(45):6016.

    Article  CAS  Google Scholar 

  19. Guicheteau J, Christesen S, Emge D, Wilcox P, Fountain AW. Appl Spectrosc. 2011;65(2).

  20. Lin M, He L, Awika J, Yang L, Ledoux DR, Li H, et al. J Food Sci. 2008;73(8):T129.

    Article  CAS  Google Scholar 

  21. Liu B, Lin M, Li H. Sens Ins Food Qual Safety. 2010;4(1):13.

    Article  CAS  Google Scholar 

  22. Almaviva S, Botti S, Cantarini L, Fantoni R, Lecci S, Palucci A, et al. Spectrosc. 2014;45:41.

    CAS  Google Scholar 

  23. Cao G, Hajisalem G, Li W, Hofb F, Gordon R. Analyst. 2014;139:5375.

    Article  CAS  Google Scholar 

  24. Tripathi A, Emmons ED, Fountain AW, Guicheteau JA, Moskovits M, Christesen SD. ACS Nano. 2015;9:584.

    Article  CAS  Google Scholar 

  25. Sun X, Dong X. Guangpuxue Yu Guangpu Fenxi. 2015;35:1572.

    CAS  Google Scholar 

  26. Perney NMB, Baumberg JJ, Zoorob ME, Charlton MDB, Mahnkopf S, Netti CM, ePrints Soton, University of Southampton, 2005.

  27. Bianco GV, Losurdo M, Giangregorio MM, Capezzuto P, Bruno G. Plasmonics. 2013;8:159.

    Article  CAS  Google Scholar 

  28. Geissler M, Li K, Cui B, Clime L, Veres T. J Phys Chem C. 2009;113:17296.

    Article  CAS  Google Scholar 

  29. Kaplan B, Guner H, Senlik O, Gurel K, Bayindir M, Dana A. Plasmonics. 2009;4(3):237.

    Article  Google Scholar 

  30. Dou X, Chung P, Jiang P, Dai J. Appl Phys Lett. 2012;100(4):041116.

    Article  Google Scholar 

  31. Fontana E. Appl Optics. 2004;43(1):79–87.

    Article  Google Scholar 

  32. Bhatnagar K, Pathak A, Menke D, Cornish PV, Gangopadhyay K, Korampally V, et al. Nanotechnology. 2012;23(49):495201.

    Article  CAS  Google Scholar 

  33. Kneipp K, Kneipp H, Ramachandra RD, Feld MS. Surface enhanced Raman spectroscopy: a brief perspective. In: Moskovits M, Kneipp K, Kneipp H, editors. Surface-enhanced Raman scattering: physics and applications. Berlin: Springer; 2006.

    Chapter  Google Scholar 

  34. Giallongo G, Pilot R, Durante C, Rizzi GA, Signorini R, Bozio R, et al. Plasmonics. 2011;6(4):725.

    Article  CAS  Google Scholar 

  35. Hori H, Tawa K, Kintaka K, Nishii J, Tatsu Y. Opt Rev. 2009;16(2):216.

    Article  CAS  Google Scholar 

  36. Song YL, Luo D, Ye S, Hou H, Wang L. Appl Surf Sci. 2012;258:2584.

    Article  CAS  Google Scholar 

  37. Merlen A, Gardenne V, Romann J, Chevallier V, Patrone L, Valmalette JC. Nanotechnology. 2009;20(21):215705.

    Article  CAS  Google Scholar 

  38. Moore JC, Spink J, Lipp M. J Food Sci. 2012;77(4):R118.

    Article  CAS  Google Scholar 

  39. World Health Organisation, Toxicological and Health aspects of melamine and cyanuric acid. In: Report of a WHO expert meeting, in collaboration with FAO and supported by Health Canada. Ottawa, 2009.

  40. Nieuwoudt MK, Martin JW, Oosterbeek RN, Novikova NI, Wang X, Malmström J et al, Proc. SPIE 9332, Optical diagnostics and sensing XV: toward point-of-care diagnostics. L Gerard editors, 933207 (2015); San Francisco. 2015 doi:10.1117/12.2078638.

  41. Moulder JF, Stickle WF, Sobol PE, Bomben KD. Handbook of X-ray photoelectron spectroscopy. Eden Prairie: Perkin-Elmer Corporation; 1992.

    Google Scholar 

  42. LaCie, Blu-ray, 2014; Available from: https://www.lacie.com/us/technologies/technology.htm?id=10026.

  43. Koglin E, Kip BJ, Meier RJ. J Phys Chem. 1996;100:5078.

    Article  CAS  Google Scholar 

  44. International Conference on Harmonization (ICH) of technical requirements for the registration of pharmaceuticals for human use, validation of analytical procedures: text and methodology. ICH-Q2B, Geneva; 1996.

  45. HORIBA Ltd., 1996–2016, http://www.horiba.com/scientific/products/fluorescence-spectroscopy/signal-to-noise-ratio/.

  46. Turnipseed S, Casev C, Nochetto C, Heller DN, Determination of melamine and cyanuric acid residues in infant formula using LC-MS/MS. LIB 4421 melamine and cyanuric acid residues in infant formula. FDA, U.S. Food and Drug Administration: Silver Spring. 2008; Vol. 24.

  47. Liu Y, Todd EE, Zhang Q, Shi JR, Liu XJ. J Zhejiang Univ Sci B. 2012;13(7):525.

    Article  CAS  Google Scholar 

  48. Tittlemier SA. Food Addit Contam: Part A. 2010;27(2):129.

    Article  CAS  Google Scholar 

  49. Sun F, Ma W, Xu L, Zhu Y, Liu L, Peng C, et al. Trends Anal Chem. 2010;29(11):1239.

    Article  CAS  Google Scholar 

  50. Silly F, Shaw AQ, Casell MR, Brigs GAD, Mura M, Marstinovich N, et al. J Phys Chem C. 2008;112:11476.

    Article  CAS  Google Scholar 

  51. Rakic AD, Djurišić AB, Elazar JM, Majewski ML. Appl Optics. 1998;37:5271.

    Article  CAS  Google Scholar 

  52. Kim A, Barcelo SJ, Williams RS, Li Z. Anal Chem. 2012;84(21):9303.

    CAS  Google Scholar 

  53. Wen ZQ, Li G, Ren D. Appl Spectrosc. 2011;65(5):514.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support for this research from Fonterra is gratefully acknowledged. The support from the Faculty of Science at the University of Auckland and the Ministry of Business, Innovation and Employment (UOAX0812) and the assistance of Dr. Gordon Miskelly with UV-vis reflectance measurements are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David E. Williams or M. Cather Simpson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 554 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nieuwoudt, M.K., Martin, J.W., Oosterbeek, R.N. et al. Gold-sputtered Blu-ray discs: simple and inexpensive SERS substrates for sensitive detection of melamine. Anal Bioanal Chem 408, 4403–4411 (2016). https://doi.org/10.1007/s00216-016-9545-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9545-5

Keywords

Navigation