Skip to main content
Log in

Toward faster and higher resolution LA–ICPMS imaging: on the co-evolution of LA cell design and ICPMS instrumentation

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We describe trends in fast, high resolution elemental imaging by laser ablation–inductively coupled plasma mass spectrometry (LA–ICPMS). Recently developed low dispersion LA cells deliver quantitative transport of ablated aerosols within 10 ms and also provide enhanced sensitivity compared to conventional LA cells because the analyte ion signal becomes less diluted during aerosol transport. When connected to simultaneous ICPMS instruments, these low dispersion LA cells offer a platform for high speed and high lateral resolution shot-resolved LA–ICPMS imaging. Here, we examine the current paradigms of LA–ICPMS imaging and discuss how newly developed LA cell technology combined with simultaneous ICPMS instrumentation is poised to overcome current instrumental limitations to deliver faster, higher resolution elemental imaging.

On means for obtaining high-speed, high-resolution, multielemental images is to combine new lowdispersion laser-ablation cell technology with an inductively coupled plasma time-of-flight mass spectrometer (ICP-TOFMS). Here, we show three selected-isotope LA-ICP-TOFMS images of a hetereogeneous Opalinus clay sample

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods. 2014;11(4):417–22.

    Article  CAS  Google Scholar 

  2. Wang HA, Grolimund D, Giesen C, Borca CN, Shaw-Stewart JR, Bodenmiller B, et al. Fast chemical imaging at high spatial resolution by laser ablation inductively coupled plasma mass spectrometry. Anal Chem. 2013;85(21):10107–16.

    Article  CAS  Google Scholar 

  3. Van Malderen SJM, van Elteren JT, Vanhaecke F. Development of a fast laser ablation-inductively coupled plasma-mass spectrometry cell for sub-μm scanning of layered materials. J Anal At Spectrom. 2015;30(1):119–25.

    Article  Google Scholar 

  4. Van Malderen SJ, van Elteren JT, Vanhaecke F. Submicrometer imaging by laser ablation-inductively coupled plasma mass spectrometry via signal and image deconvolution approaches. Anal Chem. 2015;87(12):6125–32.

    Article  Google Scholar 

  5. Gundlach-Graham AW, Burger M, Allner S, Schwarz G, Wang HAO, Gyr L, et al. High-speed, high-resolution, multi-elemental LA–ICP–TOFMS imaging: Part I. instrumentation and two-dimensional imaging of geological samples. Anal Chem. 2015;87(16):8250–8.

    Article  CAS  Google Scholar 

  6. Burger M, Gundlach-Graham A, Allner S, Schwarz G, Wang HAO, Gyr L, et al. High-speed, high-resolution, multielemental LA–ICP–TOFMS imaging: Part II. critical evaluation of quantitative three-dimensional imaging of major, minor, and trace elements in geological samples. Anal Chem. 2015;87(16):8259–67.

    Article  CAS  Google Scholar 

  7. Kindness A, Sekaran CN, Feldmann J. Two-dimensional mapping of copper and zinc in liver sections by laser ablation-inductively coupled plasma mass spectrometry. Clin Chem. 2003;49(11):1916–23.

    Article  CAS  Google Scholar 

  8. Woodhead JD, Hellstrom J, Hergt JM, Greig A, Maas R. Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma‐mass spectrometry. Geostand Geoanal Res. 2007;31(4):331–43.

    CAS  Google Scholar 

  9. Sabine Becker J. Imaging of metals in biological tissue by laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS): state of the art and future developments. J Mass Spectrom. 2013;48(2):255–68.

    Article  CAS  Google Scholar 

  10. Gray AL. Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst. 1985;110(5):551–6.

    Article  CAS  Google Scholar 

  11. Günther D, Hattendorf B. Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry. TrAC Trends Anal Chem. 2005;24(3):255–65.

    Article  Google Scholar 

  12. Hattendorf B, Günther D. Laser ablation inductively coupled plasma mass spectrometry (LA–ICPMS). Handbook of spectroscopy. Weinheim: Wiley-VCH; 2014. p. 647–98.

    Google Scholar 

  13. Longerich HP, Günther D, Jackson SE. Elemental fractionation in laser ablation inductively coupled plasma mass spectrometry. Fresenius J Anal Chem. 1996;355(5–6):538–42.

    CAS  Google Scholar 

  14. Kuhn H-R, Guillong M, Günther D. Size-related vaporisation and ionisation of laser-induced glass particles in the inductively coupled plasma. Anal Bioanal Chem. 2004;378(4):1069–74.

    Article  CAS  Google Scholar 

  15. Russo RE, Mao X, Gonzalez JJ, Zorba V, Yoo J. Laser ablation in analytical chemistry. Anal Chem. 2013;85(13):6162–77.

    Article  CAS  Google Scholar 

  16. Lear J, Hare D, Adlard P, Finkelstein D, Doble P. Improving acquisition times of elemental bio-imaging for quadrupole-based LA–ICP–MS. J Anal At Spectrom. 2012;27(1):159–64.

    Article  CAS  Google Scholar 

  17. Holland JF, Enke CG, Allison J, Stults JT, Pinkston JD, Newcome B, et al. Mass spectrometry on the chromatographic time scale: realistic expectations. Anal Chem. 1983;55(9):997A–1012.

    Article  CAS  Google Scholar 

  18. Schilling GD, Andrade FJ, Barnes JH, Sperline RP, Denton MB, Barinaga CJ, et al. Continuous simultaneous detection in mass spectrometry. Anal Chem. 2007;79(20):7662–8.

    Article  CAS  Google Scholar 

  19. Bleiner D, Belloni F, Doria D, Lorusso A, Nassisi V. Overcoming pulse mixing and signal tailing in laser ablation inductively coupled plasma mass spectrometry depth profiling. J Anal At Spectrom. 2005;20(12):1337–43.

    Article  CAS  Google Scholar 

  20. Bleiner D, Gunther D. Theoretical description and experimental observation of aerosol transport processes in laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2001;16(5):449–56.

    Article  CAS  Google Scholar 

  21. Plotnikov A, Vogt C, Wetzig K, Kyriakopoulos A. A theoretical approach to the interpretation of the transient data in scanning laser ablation inductively coupled plasma mass spectrometry: consideration of the geometry of the scanning area. Spectrochim Acta B. 2008;63(4):474–83.

    Article  Google Scholar 

  22. Triglav J, van Elteren JT, Šelih VS. Basic modeling approach to optimize elemental imaging by laser ablation ICPMS. Anal Chem. 2010;82(19):8153–60.

    Article  CAS  Google Scholar 

  23. Wang HAO, Grolimund D, Van Loon LR, Barmettler K, Borca CN, Aeschlimann B, et al. Quantitative chemical imaging of element diffusion into heterogeneous media using laser ablation inductively coupled plasma mass spectrometry, synchrotron micro-x-ray fluorescence, and extended x-ray absorption fine structure spectroscopy. Anal Chem. 2011;83(16):6259–66.

    Article  CAS  Google Scholar 

  24. Elteren J, Izmer A, Sala M, Orsega EF, Selih VS, Panighello S, et al. 3D laser ablation-ICP–mass spectrometry mapping for the study of surface layer phenomena – a case study for weathered glass. J Anal At Spectrom. 2013;28:994–1004.

    Article  Google Scholar 

  25. Chirinos JR, Oropeza DD, Gonzalez JJ, Hou HM, Morey M, Zorba V, et al. Simultaneous 3-dimensional elemental imaging with LIBS and LA–ICP–MS. J Anal At Spectrom. 2014;29(7):1292–8.

    Article  CAS  Google Scholar 

  26. Jakubowski N, Prohaska T, Rottmann L, Vanhaecke F. Inductively coupled plasma- and glow discharge plasma-sector field mass spectrometry Part I. Tutorial: fundamentals and instrumentation. J Anal At Spectrom. 2011;26(4):693–726.

    Article  CAS  Google Scholar 

  27. Wehe C, Thyssen G, Herdering C, Raj I, Ciarimboli G, Sperling M, et al. Elemental bioimaging by means of fast scanning laser ablation-inductively coupled plasma-mass spectrometry. J Am Soc Mass Spectrom. 2015;26(8):1274–82.

    Article  CAS  Google Scholar 

  28. Dziewatkoski MP, Daniels LB, Olesik JW. Time-resolved inductively coupled plasma mass spectrometry measurements with individual, monodisperse drop sample introduction. Anal Chem. 1996;68(7):1101–9.

    Article  CAS  Google Scholar 

  29. Heinrich C, Pettke T, Halter W, Aigner-Torres M, Audétat A, Günther D, et al. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim Cosmochim Acta. 2003;67(18):3473–97.

    Article  CAS  Google Scholar 

  30. Borovinskaya O, Hattendorf B, Tanner M, Gschwind S, Gunther D. A prototype of a new inductively coupled plasma time-of-flight mass spectrometer providing temporally resolved, multi-element detection of short signals generated by single particles and droplets. J Anal At Spectrom. 2013;28(2):226–33.

    Article  CAS  Google Scholar 

  31. Myers DP, Li G, Yang P, Hieftje GM. An inductively coupled plasma–time-of-flight mass spectrometer for elemental analysis. Part I: optimization and characteristics. J Am Soc Mass Spectrom. 1994;5(11):1008–16.

    Article  CAS  Google Scholar 

  32. Burgoyne TW, Hieftje GM, Hites RA. Design and performance of a plasma-source mass spectrograph. J Am Soc Mass Spectrom. 1997;8(4):307–18.

    Article  CAS  Google Scholar 

  33. Hieftje GM, Barnes JH, Grøn OA, Leach AM, McClenathan DM, Ray SJ, et al. Evolution and revolution in instrumentation for plasma-source mass spectrometry. Pure Appl Chem. 2001;73(10):1579–88.

    Article  CAS  Google Scholar 

  34. Mahoney PP, Li G, Hieftje GM. Laser ablation-inductively coupled plasma mass spectrometry with a time-of-flight mass analyser. J Anal At Spectrom. 1996;11(6):401–5.

    Article  CAS  Google Scholar 

  35. Bleiner D, Hametner K, Günther D. Optimization of a laser ablation-inductively coupled plasma “time of flight” mass spectrometry system for short transient signal acquisition. Fresenius J Anal Chem. 2000;368(1):37–44.

    Article  CAS  Google Scholar 

  36. Leach AM, Hieftje GM. Standardless semiquantitative analysis of metals using single-shot laser ablation inductively coupled plasma time-of-flight mass spectrometry. Anal Chem. 2001;73(13):2959–67.

    Article  CAS  Google Scholar 

  37. Borovinskaya O, Gschwind S, Hattendorf B, Tanner M, Günther D. Simultaneous mass quantification of nanoparticles of different composition in a mixture by microdroplet generator-ICPTOFMS. Anal Chem. 2014;86(16):8142–8.

    Article  CAS  Google Scholar 

  38. Leach AM, Hieftje GM. Factors affecting the production of fast transient signals in single shot laser ablation inductively coupled plasma mass spectrometry. Appl Spectrosc. 2002;56(1):62–9.

    Article  CAS  Google Scholar 

  39. Liu XR, Horlick G. In-situ laser-ablation sampling for inductively-coupled plasma-atomic emission-spectrometry. Spectrochim Acta B. 1994;50(4–7):537–48.

    Google Scholar 

  40. Tanner M, Gunther D. In torch laser ablation sampling for inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2005;20(9):987–9.

    Article  CAS  Google Scholar 

  41. Tabersky D, Nishiguchi K, Utani K, Ohata M, Dietiker R, Fricker MB, et al. Aerosol entrainment and a large-capacity gas exchange device (Q-GED) for laser ablation inductively coupled plasma mass spectrometry in atmospheric pressure air. J Anal At Spectrom. 2013;28(6):831–42.

    Article  CAS  Google Scholar 

  42. Pisonero J, Fliegel D, Gunther D. High efficiency aerosol dispersion cell for laser ablation-ICP–MS. J Anal At Spectrom. 2006;21(9):922–31.

    Article  CAS  Google Scholar 

  43. Gurevich EL, Hergenroder R. A simple laser ICP–MS ablation cell with wash-out time less than 100 ms. J Anal At Spectrom. 2007;22(9):1043–50.

    Article  CAS  Google Scholar 

  44. Lindner H, Autrique D, Pisonero J, Gunther D, Bogaerts A. Numerical simulation analysis of flow patterns and particle transport in the HEAD laser ablation cell with respect to inductively coupled plasma spectrometry. J Anal At Spectrom. 2010;25(3):295–304.

    Article  CAS  Google Scholar 

  45. Douglas DN, Managh AJ, Reid HJ, Sharp BL. A high-speed, integrated ablation cell and dual concentric injector plasma torch for laser ablation-inductively coupled plasma-mass spectrometry. Anal Chem. 2015;87(22):11285–94.

    Article  CAS  Google Scholar 

  46. Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem. 2009;81(16):6813–9822.

    Article  CAS  Google Scholar 

  47. Gundlach-Graham A, Dennis EA, Ray SJ, Enke CG, Barinaga CJ, Koppenaal DW, et al. First inductively coupled plasma-distance-of-flight mass spectrometer: instrument performance with a microchannel plate/phosphor imaging detector. J Anal At Spectrom. 2013;28(9):1385–95.

    Article  CAS  Google Scholar 

  48. Borovinskaya O, Tanner M, Cubison M, Günther D (2015) A new commercial ICP–TOFMS for the anaylsis of nanoparticles. European winter conference on plasma spectrochemistry, Münster, Germany, 23 February 2015.

Download references

Acknowledgments

Alex Gundlach-Graham would like to acknowledge financial support through the Marie Curie International Incoming Fellowship: the research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 624280. A.G.-G. thanks Gunnar Schwarz for helpful critiques and comments on an early version of this manuscript. We would also like the acknowledge the work of Marcel Burger, Steffen Allner, Luzia Gyr, and Dr. Hao Wang for contribution to collection and analysis of the LA–ICP–TOFMS data presented here, and Dr. Daniel Grolimund for providing the cesium-infiltrated Opalinus clay sample.

Compliance with ethical standards

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Gundlach-Graham.

Additional information

Published in the topical collection featuring Young Investigators in Analytical and Bioanalytical Science with guest editors S. Daunert, A. Baeumner, S. Deo, J. Ruiz Encinar, and L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gundlach-Graham, A., Günther, D. Toward faster and higher resolution LA–ICPMS imaging: on the co-evolution of LA cell design and ICPMS instrumentation. Anal Bioanal Chem 408, 2687–2695 (2016). https://doi.org/10.1007/s00216-015-9251-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9251-8

Keywords

Navigation