Skip to main content
Log in

Rapid automated method for on-site determination of sulfadiazine in fish farming: a stainless steel veterinary syringe coated with a selective membrane of PVC serving as a potentiometric detector in a flow-injection-analysis system

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Sulfadiazine is an antibiotic of the sulfonamide group and is used as a veterinary drug in fish farming. Monitoring it in the tanks is fundamental to control the applied doses and avoid environmental dissemination. Pursuing this goal, we included a novel potentiometric design in a flow-injection assembly. The electrode body was a stainless steel needle veterinary syringe of 0.8-mm inner diameter. A selective membrane of PVC acted as a sensory surface. Its composition, the length of the electrode, and other flow variables were optimized. The best performance was obtained for sensors of 1.5-cm length and a membrane composition of 33% PVC, 66% o-nitrophenyloctyl ether, 1% ion exchanger, and a small amount of a cationic additive. It exhibited Nernstian slopes of 61.0 mV decade-1 down to 1.0 × 10-5 mol L-1, with a limit of detection of 3.1 × 10-6 mol L-1 in flowing media. All necessary pH/ionic strength adjustments were performed online by merging the sample plug with a buffer carrier of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, pH 4.9. The sensor exhibited the advantages of a fast response time (less than 15 s), long operational lifetime (60 days), and good selectivity for chloride, nitrite, acetate, tartrate, citrate, and ascorbate. The flow setup was successfully applied to the analysis of aquaculture waters. The analytical results were validated against those obtained with liquid chromatography–tandem mass spectrometry procedures. The sampling rate was about 84 samples per hour and recoveries ranged from 95.9 to 106.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boxall ABA, Fogg LA, Blackwell PA, Kay P, Pemberton EJ, Croxford A (2004) Rev Environ Contam Toxicol 180:1–91

    Article  CAS  Google Scholar 

  2. Sørensen LK, Elbæk TH (2004) Chromatographia 60:287–291

    Article  Google Scholar 

  3. Cabello FC (2006) Environ Microbiol 8:1137–1144

    Article  CAS  Google Scholar 

  4. Maki T, Hirono I, Kondo H, Aoki T (2008) J Fish Dis 31:461–468

    Article  CAS  Google Scholar 

  5. Akinbowale OL, Peng H, Barton MD (2006) J Appl Microbiol 100:1103–1113

    Article  CAS  Google Scholar 

  6. Cañada-Cañada F, Muñoz de la Peña A, Espinosa-Mansilla A (2009) Anal Bioanal Chem 395:987–1008

    Article  Google Scholar 

  7. Romero-González R, López-Martínez JC, Gómez-Milán E, Garrido-Frenich A, Martínez-Vidal JL (2007) J Chromatogr B 857:142–148

    Article  Google Scholar 

  8. Croubels S, Wassink P, Backer P (2002) Anal Chim Acta 473:183–194

    Article  CAS  Google Scholar 

  9. Balakrishnan VK, Terry KA, Toito J (2006) J Chromatogr A 27:1–10

    Article  Google Scholar 

  10. Bienenmann-Ploum M, Korpimäki T, Haasnoot W, Kohen F (2005) Anal Chim Acta 529:115–122

    Article  CAS  Google Scholar 

  11. Chafer-Pericas C, Maquieira A, Puchade R, Miralle J, Moreno A (2010) Anal Bioanal Chem 396:911–921

    Article  CAS  Google Scholar 

  12. Kamel AH, Almeida SAA, Sales MGF, Moreira FTC (2009) Anal Sci 25:365–371

    Article  CAS  Google Scholar 

  13. Almeida SAA, Heitor AM, Montenegro MCBSM, Sales MGF (2011) Sulfadiazine-selective determination in aquaculture environment: selective potentiometric transduction by neutral or charged ionophores. Talanta 85:1508–1516. doi:10.1016/j.talanta.2011.06.022

    Article  CAS  Google Scholar 

  14. Lima JL, Montenegro MC, Sales MG (1996) J Pharm Biomed Anal 14:931–938

    Article  CAS  Google Scholar 

  15. Yang X, Hibbert DB, Alexander PW (1988) Anal Chim Acta 372:378–398

    Google Scholar 

  16. Alexander PW, Dimitrakopoulos T, Hibbert DB (1998) Electroanalysis 10:707–712

    Article  CAS  Google Scholar 

  17. Ceresa A, Sokalski T, Pretsch E (2001) J Electroanal Chem 501:70–76

    Article  CAS  Google Scholar 

  18. Vamvakaki M, Chaniotakis NA (1996) Anal Chim Acta 320:53–61

    Article  CAS  Google Scholar 

  19. Buck RP, Lindner E (1994) Pure Appl Chem 66:2527–2536

    Article  CAS  Google Scholar 

  20. Buck RP, Cosofret VV (1993) Pure Appl Chem 65:1849–1858

    Article  CAS  Google Scholar 

  21. Fitzer E, Kochling KH, Boehm HP, Marsh H (1975) Pure Appl Chem 67:473–506

    Article  Google Scholar 

  22. Ribeiro CMF, Matos CD, Sales MGF, Vaz MCVF (2002) Anal Chim Acta 471:41–49

    Article  CAS  Google Scholar 

  23. Aubeck R, Brauchle C, Hampp N (1991) Analyst 116:811–814

    Article  CAS  Google Scholar 

  24. Eugster R, Rosatzin T, Rusterholz B, Aebersold B, Pedrazza U, Rüegg D, Schmid A, Spichiger UE, Simon W (1994) Anal Chim Acta 289:1–13

    Article  CAS  Google Scholar 

  25. Poursaberi T, Hosseini M, Taghizadeh M, Pirelahi H, Shamsipur M, Ganjali MR (2002) Microchem J 72:77–83

    Article  CAS  Google Scholar 

  26. Dielectric constant reference guide. http://www.asiinstr.com/technical/Dielectric%20Constants.htm#Section%20D. Accessed 30 Jun 2011

  27. Bakker E, Pretsch E (2005) Trends Anal Chem 24:199–207

    Article  CAS  Google Scholar 

  28. Hara H, Okazaki S, Fujinaga T (1980) Anal Chim Acta 121:119–123

    Article  CAS  Google Scholar 

  29. Umezawa Y, Bühlmann P, Umezawa K, Tohda K, Amemiya S (2002) Pure Appl Chem 72:1851–2082

    Article  Google Scholar 

  30. Wegmann D, Weiss H, Ammann D, Morf WE, Pretsch E, Sugahara K, Simon W (1984) Mickrochim Acta 1–16

  31. Fujinaga T, Okazaki S, Hara H (1978) Chem Lett 11:1201–1202

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from FCT, Fundação para a Ciência e Tecnologia/FEDER by means of project PTDC/AGR-AAM/68359/2006 and a PhD grant to S.A.A.A. (SFRH/BD/42509/2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. F. Sales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almeida, S.A.A., Amorim, L.R., Heitor, A.H. et al. Rapid automated method for on-site determination of sulfadiazine in fish farming: a stainless steel veterinary syringe coated with a selective membrane of PVC serving as a potentiometric detector in a flow-injection-analysis system. Anal Bioanal Chem 401, 3355–3365 (2011). https://doi.org/10.1007/s00216-011-5441-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5441-1

Keywords

Navigation