Skip to main content
Log in

Electrochemical plasmonic sensors

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The enormous progress of nanotechnology during the last decade has made it possible to fabricate a great variety of nanostructures. On the nanoscale, metals exhibit special electrical and optical properties, which can be utilized for novel applications. In particular, plasmonic sensors including both the established technique of surface plasmon resonance and more recent nanoplasmonic sensors, have recently attracted much attention. However, some of the simplest and most successful sensors, such as the glucose biosensor, are based on electrical readout. In this review we describe the implementation of electrochemistry with plasmonic nanostructures for combined electrical and optical signal transduction. We highlight results from different types of metallic nanostructures such as nanoparticles, nanowires, nanoholes or simply films of nanoscale thickness. We briefly give an overview of their optical properties and discuss implementation of electrochemical methods. In particular, we review studies on how electrochemical potentials influence the plasmon resonances in different nanostructures, as this type of fundamental understanding is necessary for successful combination of the methods. Although several combined platforms exist, many are not yet in use as sensors partly because of the complicated effects from electrochemical potentials on plasmon resonances. Yet, there are clearly promising aspects of these sensor combinations and we conclude this review by discussing the advantages of synchronized electrical and optical readout, illustrating the versatility of these technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Drude P (1900) Ann Phys Berl 1566–613

  2. Rapp BE, Gruhl FJ, Lange K (2010) Anal Bioanal Chem 398:2403–2412

    Article  CAS  Google Scholar 

  3. Lee S-W, Lee K-S, Ahn J, Lee J-J, Kim M-G, Shin Y-B (2011) ACS Nano 5:897–904

    Article  CAS  Google Scholar 

  4. Lyon LA, Musick MD, Natan MJ (1998) Anal Chem 70:5177–5183

    Article  CAS  Google Scholar 

  5. Ramanathan K, Danielsson B (2001) Biosens Bioelectron 16:417–423

    Article  CAS  Google Scholar 

  6. Chemla YR, Crossman HL, Poon Y, McDermott R, Stevens R, Alper MD, Clarke J (2000) Proc Natl Acad Sci USA 97:14268–14272

    Article  CAS  Google Scholar 

  7. Janshoff A, Galla HJ, Steinem C (2000) Angew Chem Int Ed 39:4004–4032

    Article  CAS  Google Scholar 

  8. Lange K, Rapp BE, Rapp M (2008) Anal Bioanal Chem 391:1509–1519

    Article  CAS  Google Scholar 

  9. Hwang KS, Lee SM, Kim SK, Lee JH, Kim TS (2009) Annu Rev Anal Chem 2:77–98

    Article  CAS  Google Scholar 

  10. Gauglitz G (2005) Anal Bioanal Chem 381:141–155

    Article  CAS  Google Scholar 

  11. Homola J (2008) Chem Rev 108:462–493

    Article  CAS  Google Scholar 

  12. Homola J (2003) Anal Bioanal Chem 377:528–539

    Article  CAS  Google Scholar 

  13. Squires TM, Messinger RJ, Manalis SR (2008) Nat Biotechnol 26:417–426

    Article  CAS  Google Scholar 

  14. Dahlin AB, Jonsson MP, Hook F (2008) Adv Mater 20:1436

    Article  CAS  Google Scholar 

  15. Marinakos SM, Chen SH, Chilkoti A (2007) Anal Chem 79:5278–5283

    Article  CAS  Google Scholar 

  16. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Chem Rev 108:494–521

    Article  CAS  Google Scholar 

  17. Mayer KM, Hafner JH (2011) Chem Rev 111:3828–3857

    Article  CAS  Google Scholar 

  18. Sannomiya T, Vörös J (2011) Trends Biotechnol 29:343–351

    Article  CAS  Google Scholar 

  19. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  20. Bendikov TA, Rabinkov A, Karakouz T, Vaskevich A, Rubinstein I (2008) Anal Chem 80:7487–7498

    Article  CAS  Google Scholar 

  21. Kedem O, Tesler AB, Vaskevich A, Rubinstein I (2011) ACS Nano 5:748–760

    Article  CAS  Google Scholar 

  22. Dahlin AB, Jonsson P, Jonsson MP, Schmid E, Zhou Y, Hook F (2008) ACS Nano 2:2174–2182

    Article  CAS  Google Scholar 

  23. Verellen N, Van Dorpe P, Huang C, Lodewijks K, Vandenbosch GAE, Lagae L, Moshchalkov VV (2011) Nano Lett 11:391–397

    Article  CAS  Google Scholar 

  24. Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Nat Mater 8:867–871

    Article  CAS  Google Scholar 

  25. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Science 277:1078–1081

    Article  CAS  Google Scholar 

  26. Laromaine A, Koh LL, Murugesan M, Ulijn RV, Stevens MM (2007) J Am Chem Soc 129:4156

    Article  CAS  Google Scholar 

  27. Liu GL, Yin YD, Kunchakarra S, Mukherjee B, Gerion D, Jett SD, Bear DG, Gray JW, Alivisatos AP, Lee LP, Chen FQF (2006) Nat Nanotechnol 1:47–52

    Article  CAS  Google Scholar 

  28. Reinhard BM, Sheikholeslami S, Mastroianni A, Alivisatos AP, Liphardt J (2007) Proc Natl Acad Sci USA 104:2667–2672

    Article  CAS  Google Scholar 

  29. Sonnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) Nat Biotechnol 23:741–745

    Article  CAS  Google Scholar 

  30. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Angew Chem Int Ed 49:3280–3294

    CAS  Google Scholar 

  31. Alvarez-Puebla RA, Liz-Marzan LM (2010) Small 6:604–610

    Article  CAS  Google Scholar 

  32. Makowski MS, Ivanisevic A (2011) Small 7:1863–1875

    Article  CAS  Google Scholar 

  33. Cui Y, Wei QQ, Park HK, Lieber CM (2001) Science 293:1289–1292

    Article  CAS  Google Scholar 

  34. Zheng GF, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Nat Biotechnol 23:1294–1301

    Article  CAS  Google Scholar 

  35. Grieshaber D, MacKenzie R, Voros J, Reimhult E (2008) Sensors 8:1400–1458

    Article  CAS  Google Scholar 

  36. Baba A, Taranekar P, Ponnapati RR, Knoll W, Advincula RC (2010) ACS Appl Mater Interfaces 2:2347–2354

    Article  CAS  Google Scholar 

  37. Goluch ED, Wolfrum B, Singh PS, Zevenbergen MAG, Lemay SG (2009) Anal Bioanal Chem 394:447–456

    Article  CAS  Google Scholar 

  38. Zachek MK, Park J, Takmakov P, Wightman RM, McCarty GS (2010) Analyst 135:1556–1563

    Article  CAS  Google Scholar 

  39. Lisdat F, Schafer D (2008) Anal Bioanal Chem 391:1555–1567

    Article  CAS  Google Scholar 

  40. Daniels JS, Pourmand N (2007) Electroanalysis 19:1239–1257

    Article  CAS  Google Scholar 

  41. Berggren C, Bjarnason B, Johansson G (2001) Electroanalysis 13:173–180

    Article  CAS  Google Scholar 

  42. Dahlin AB, Sannomiya T, Zahn R, Sotiriou GA, Vörös J (2011) Nano Lett 11:1337–1343

    Article  CAS  Google Scholar 

  43. Freestone I, Meeks N, Sax M, Higgitt C (2007) Gold Bull 40:270–277

    Article  CAS  Google Scholar 

  44. Johnson PB, Christy RW (1972) Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  45. Zhang W, Brongersma SH, Richard O, Brijs B, Palmans R, Froyen L, Maex K (2004) Microelectron Eng 76:146–152

    Article  CAS  Google Scholar 

  46. Haes AJ, Van Duyne RP (2004) Anal Bioanal Chem 379:920–930

    Article  CAS  Google Scholar 

  47. Liedberg B, Nylander C, Lundstrom I (1983) Sens Actuators 4:299–304

    Article  CAS  Google Scholar 

  48. Chan GH, Zhao J, Hicks EM, Schatz GC, Van Duyne RP (2007) Nano Lett 7:1947–1952

    Article  CAS  Google Scholar 

  49. Gao H, Henzie J, Lee MH, Odom TW (2008) Proc Natl Acad Sci USA 105:20146–20151

    Article  CAS  Google Scholar 

  50. Langhammer C, Yuan Z, Zoric I, Kasemo B (2006) Nano Lett 6:833–838

    Article  CAS  Google Scholar 

  51. Vestergaard MD, Kerman K, Tamiya E (2007) Sensors 7:3442–3458

    Article  CAS  Google Scholar 

  52. Zhang N, Schweiss R, Zong Y, Knoll W (2007) Electrochim Acta 52:2869–2875

    Article  CAS  Google Scholar 

  53. Abeles F, Lopezrios T, Tadjeddine A (1975) Solid State Commun 16:843–847

    Article  CAS  Google Scholar 

  54. Shan XN, Patel U, Wang SP, Iglesias R, Tao NJ (2010) Science 327:1363–1366

    Article  CAS  Google Scholar 

  55. Zhang YM, Terrill RH, Bohn PW (1999) Anal Chem 71:119–125

    Article  CAS  Google Scholar 

  56. Xia C, Advincula RC, Baba A, Knoll W (2002) Langmuir 18:3555–3560

    Article  CAS  Google Scholar 

  57. Wang YJ, Knoll W (2006) Anal Chim Acta 558:150–157

    Article  CAS  Google Scholar 

  58. Kang XF, Cheng GJ, Dong SJ (2001) Electrochem Commun 3:489–493

    Article  CAS  Google Scholar 

  59. Baba A, Advincula RC, Knoll W (2002) J Phys Chem B 106:1581–1587

    Article  CAS  Google Scholar 

  60. Hanken DG, Corn RM (1997) Anal Chem 69:3665–3673

    Article  CAS  Google Scholar 

  61. McIntyre JD (1973) Surf Sci 37:658–682

    Article  CAS  Google Scholar 

  62. Tadjeddine A, Kolb DM, Kotz R (1980) Surf Sci 101:277–285

    Article  CAS  Google Scholar 

  63. Iwasaki Y, Horiuchi T, Morita M, Niwa O (1998) Sens Actuators B Chem 50:145–148

    Article  Google Scholar 

  64. Foley KJ, Shan X, Tao NJ (2008) Anal Chem 80:5146–5151

    Article  CAS  Google Scholar 

  65. Kolb DM (2001) Angew Chem Int Ed 40:1162–1181

    Article  CAS  Google Scholar 

  66. Wang S, Huang X, Shan X, Foley KJ, Tao N (2010) Anal Chem 82:935–941

    Article  CAS  Google Scholar 

  67. Scarano S, Mascini M, Turner APF, Minunni M (2010) Biosens Bioelectron 25:957–966

    Article  CAS  Google Scholar 

  68. Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Chem Soc Rev 37:1783–1791

    Article  CAS  Google Scholar 

  69. Kim F, Connor S, Song H, Kuykendall T, Yang PD (2004) Angew Chem Int Ed 43:3673–3677

    Article  CAS  Google Scholar 

  70. Wang H, Brandl DW, Nordlander P, Halas NJ (2007) Acc Chem Res 40:53–62

    Article  CAS  Google Scholar 

  71. Hanarp P, Kall M, Sutherland DS (2003) J Phys Chem B 107:5768–5772

    Article  CAS  Google Scholar 

  72. Haynes CL, Van Duyne RP (2001) J Phys Chem B 105:5599–5611

    Article  CAS  Google Scholar 

  73. Aizpurua J, Hanarp P, Sutherland DS, Kall M, Bryant GW, de Abajo FJG (2003) Phys Rev Lett 90:057401

    Article  CAS  Google Scholar 

  74. Bukasov R, Shumaker-Parry JS (2007) Nano Lett 7:1113–1118

    Article  CAS  Google Scholar 

  75. Takei H, Himmelhaus M, Okamoto T (2002) Opt Lett 27:342–344

    Article  CAS  Google Scholar 

  76. Heo CJ, Kim SH, Jang SG, Lee SY, Yang SM (2009) Adv Mater 21:1726–1731

    Article  CAS  Google Scholar 

  77. Myroshnychenko V, Rodriguez-Fernandez J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzan LM, de Abajo FJG (2008) Chem Soc Rev 37:1792–1805

    Article  CAS  Google Scholar 

  78. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  79. Englebienne P (1998) Analyst 123:1599–1603

    Article  CAS  Google Scholar 

  80. Daniel MC, Astruc D (2004) Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  81. Shipway AN, Lahav M, Willner I (2000) Adv Mater 12:993–998

    Article  CAS  Google Scholar 

  82. Mulvaney P (1996) Langmuir 12:788–800

    Article  CAS  Google Scholar 

  83. Murray RW, Templeton AC, Pietron JJ, Mulvaney P (2000) J Phys Chem B 104:564–570

    Article  CAS  Google Scholar 

  84. Ung T, Giersig M, Dunstan D, Mulvaney P (1997) Langmuir 13:1773–1782

    Article  CAS  Google Scholar 

  85. Oldfield G, Ung T, Mulvaney P (2000) Adv Mater 12:1519–1522

    Article  CAS  Google Scholar 

  86. Chapman R, Mulvaney P (2001) Chem Phys Lett 349:358–362

    Article  CAS  Google Scholar 

  87. Miyazaki T, Hasegawa R, Yamaguchi H, Oh-Oka H, Nagato H, Amemiya I, Uchikoga S (2009) J Phys Chem C 113:8484–8490

    Article  CAS  Google Scholar 

  88. Novo C, Funston AM, Gooding AK, Mulvaney P (2009) J Am Chem Soc 131:14664–14666

    Article  CAS  Google Scholar 

  89. Novo C, Funston AM, Mulvaney P (2008) Nat Nanotechnol 3:598–602

    Article  CAS  Google Scholar 

  90. Novo C, Mulvaney P (2007) Nano Lett 7:520–524

    Article  CAS  Google Scholar 

  91. Qu XH, Peng ZQ, Jiang X, Dong SJ (2004) Langmuir 20:2519–2522

    Article  CAS  Google Scholar 

  92. Sannomiya T, Dermutz H, Hafner C, Voros J, Dahlin AB (2010) Langmuir 26:7619–7626

    Article  CAS  Google Scholar 

  93. Szunerits S, Praig VG, Manesse M, Boukherroub R (2008) Gold island films on indium tin oxide for localized surface plasmon sensing. Nanotechnology 19:195712

    Article  CAS  Google Scholar 

  94. Zhang X, Hicks EM, Zhao J, Schatz GC, Van Duyne RP (2005) Nano Lett 5:1503–1507

    Article  CAS  Google Scholar 

  95. Kanehara M, Koike H, Yoshinaga T, Teranishi T (2009) J Am Chem Soc 131:17736–17737

    Article  CAS  Google Scholar 

  96. Armstrong NR, Lin AWC, Fujihira M, Kuwana T (1976) Anal Chem 48:741–750

    Article  CAS  Google Scholar 

  97. Loo BH (1982) J Phys Chem 86:433–437

    Article  CAS  Google Scholar 

  98. Ivanova OS, Zamborini FP (2009) J Am Chem Soc 132:70–72

    Article  CAS  Google Scholar 

  99. Gao P, Weaver MJ (1986) J Phys Chem 90:4057–4063

    Article  CAS  Google Scholar 

  100. Wang TJ, Lin WS (2006) Appl Phys Lett 89:173903

    Article  CAS  Google Scholar 

  101. Hiep HM, Endo T, Saito M, Chikae M, Kim DK, Yamamura S, Takamura Y, Tamiya E (2008) Anal Chem 80:1859–1864

    Article  CAS  Google Scholar 

  102. Janshoff A, Steinem C (2006) Anal Bioanal Chem 385:433–451

    Article  CAS  Google Scholar 

  103. Ruther M, Shao L-H, Linden S, Weissmüller J, Wegener M (2011) Appl Phys Lett 98:013112

    Article  CAS  Google Scholar 

  104. Shao L-H, Ruther M, Linden S, Essig S, Busch K, Weissmüller J, Wegener M (2010) Adv Mater 22:5173–5177

    Article  CAS  Google Scholar 

  105. Auzelyte V, Solak HH, Ekinci Y, MacKenzie R, Voros J, Olliges S, Spolenak R (2008) Microelectron Eng 85:1131–1134

    Article  CAS  Google Scholar 

  106. Chen HA, Lin HY, Lin HN (2010) J Phys Chem C 114:10359–10364

    Article  CAS  Google Scholar 

  107. Lin HY, Chen HA, Lin HN (2008) Anal Chem 80:1937–1941

    Article  CAS  Google Scholar 

  108. Menke EJ, Thompson MA, Xiang C, Yang LC, Penner RM (2006) Nat Mater 5:914–919

    Article  CAS  Google Scholar 

  109. Shi P, Zhang JY, Lin HY, Bohn PW (2010) Small 6:2598–2603

    Article  CAS  Google Scholar 

  110. Xu QB, Bao JM, Capasso F, Whitesides GM (2006) Angew Chem Int Ed 45:3631–3635

    Article  CAS  Google Scholar 

  111. Lal S, Link S, Halas NJ (2007) Nat Photonics 1:641–648

    Article  CAS  Google Scholar 

  112. Schider G, Krenn JR, Gotschy W, Lamprecht B, Ditlbacher H, Leitner A, Aussenegg FR (2001) J Appl Phys 90:3825–3830

    Article  CAS  Google Scholar 

  113. Della Valle G, Sondergaard T, Bozhevolnyi SI (2008) Opt Express 16:6867–6876

    Article  CAS  Google Scholar 

  114. Sosnova MV, Dmitruk NL, Korovin AV, Mamykin SV, Mynko VI, Lytvyn OS (2010) Appl Phys B Lasers Opt 99:493–497

    Article  CAS  Google Scholar 

  115. Byun KM, Kim SJ, Kim D (2006) Appl Opt 45:3382–3389

    Article  Google Scholar 

  116. MacKenzie R, Fraschina C, Sannomiya T, Auzelyte V, Vörös J (2010) Sensors 10:9808–9830

    Article  CAS  Google Scholar 

  117. Durkan C, Welland ME (2000) Phys Rev B 61:14215–14218

    Article  CAS  Google Scholar 

  118. Liu Z, Searson PC (2006) J Phys Chem B 110:4318–4322

    Article  CAS  Google Scholar 

  119. MacKenzie R, Fraschina C, Sannomiya T, Voros J (2011) Nanotechnology 22:055203

    Article  CAS  Google Scholar 

  120. Singh KV, Whited AM, Ragineni Y, Barrett TW, King J, Solanki R (2010) Anal Bioanal Chem 397:1493–1502

    Article  CAS  Google Scholar 

  121. Bratov A, Ramon-Azcon J, Abramova N, Merlos A, Adrian J, Sanchez-Baeza F, Marco MP, Dominguez C (2008) Biosens Bioelectron 24:729–735

    Article  CAS  Google Scholar 

  122. Evans D, Johnson S, Laurenson S, Davies AG, Ko Ferrigno P, Walti C (2008) J Biol 7:3

    Article  Google Scholar 

  123. Hou YX, Helali S, Zhang AD, Jaffrezic-Renault N, Martelet C, Minic J, Gorojankina T, Persuy MA, Pajot-Augy E, Salesse R, Bessueille F, Samitier J, Errachid A, Akimov V, Reggiani L, Pennetta C, Alfinito E (2006) Biosens Bioelectron 21:1393–1402

    Article  CAS  Google Scholar 

  124. Prikulis J, Hanarp P, Olofsson L, Sutherland D, Kall M (2004) Nano Lett 4:1003–1007

    Article  CAS  Google Scholar 

  125. Jonsson MP, Dahlin AB, Jonsson P, Hook F (2008) Biointerphases 3:FD30–FD40

    Article  Google Scholar 

  126. Sannomiya T, Scholder O, Jefimovs K, Hafner C, Dahlin AB (2011) Small 7:1653–1663

    Article  CAS  Google Scholar 

  127. Henzie J, Lee MH, Odom TW (2007) Nat Nanotechnol 2:549–554

    Article  CAS  Google Scholar 

  128. Genet C, Ebbesen TW (2007) Nature 445:39–46

    Article  CAS  Google Scholar 

  129. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Nature 391:667–669

    Article  CAS  Google Scholar 

  130. Garcia-Vidal FJ, Martin-Moreno L, Ebbesen TW, Kuipers L (2010) Rev Mod Phys 82:729–787

    Article  Google Scholar 

  131. de Abajo FJG (2007) Rev Mod Phys 79:1267–1290

    Article  CAS  Google Scholar 

  132. Park TH, Mirin N, Lassiter JB, Nehl CL, Halas NJ, Nordlander P (2008) ACS Nano 2:25–32

    Article  CAS  Google Scholar 

  133. Dahlin AB, Tegenfeldt JO, Hook F (2006) Anal Chem 78:4416–4423

    Article  CAS  Google Scholar 

  134. Rindzevicius T, Alaverdyan Y, Dahlin A, Höök F, Sutherland DS, Käll M (2005) Nano Lett 5:2335–2339

    Article  CAS  Google Scholar 

  135. Ward CA, Bhasin K, Bell RJ, Alexander RW, Tyler I (1975) J Chem Phys 62:1674–1676

    Article  CAS  Google Scholar 

  136. Tobin RG (2002) Surf Sci 502:374–387

    Article  Google Scholar 

  137. Tucceri R (2004) Surf Sci Rep 56:85–157

    Article  CAS  Google Scholar 

  138. Reilly TH, Tenent RC, Barnes TM, Rowlen KL, van de Lagemaat J (2010) ACS Nano 4:615–624

    Article  CAS  Google Scholar 

  139. Jonsson MP, Dahlin AB, Feuz L, Petronis S, Hook F (2010) Anal Chem 82:2087–2094

    Article  CAS  Google Scholar 

  140. Moreira CS, Lima AMN, Neff H, Thirstrup C (2008) Sens Actuators B 134:854–862

    Article  CAS  Google Scholar 

  141. Mitchell JS, Wu YQ, Cook CJ, Main L (2005) Anal Biochem 343:125–135

    Article  CAS  Google Scholar 

  142. Liron Z, Tender LM, Golden JP, Ligler FS (2002) Biosens Bioelectron 17:489–494

    Article  CAS  Google Scholar 

  143. Tang CS, Dusseiller M, Makohliso S, Heuschkel M, Sharma S, Keller B, Voros J (2006) Anal Chem 78:711–717

    Article  CAS  Google Scholar 

  144. Walti C, Wirtz R, Germishuizen WA, Bailey DMD, Pepper M, Middelberg APJ, Davies AG (2003) Langmuir 19:981–984

    Article  CAS  Google Scholar 

  145. Beeram SR, Zamborini FP (2009) J Am Chem Soc 131:11689–11691

    Article  CAS  Google Scholar 

  146. Heller MJ, Forster AH, Tu E (2000) Electrophoresis 21:157–164

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas B. Dahlin.

Additional information

Published in the special issue Surface Architectures for Analytical Purposes with guest editors Luigia Sabbatini and Luisa Torsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahlin, A.B., Dielacher, B., Rajendran, P. et al. Electrochemical plasmonic sensors. Anal Bioanal Chem 402, 1773–1784 (2012). https://doi.org/10.1007/s00216-011-5404-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5404-6

Keywords

Navigation