Skip to main content
Log in

Raman-based geobarometry of ultrahigh-pressure metamorphic rocks: applications, problems, and perspectives

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Raman-based geobarometry has recently become increasingly popular because it is an elegant way to obtain information on peak metamorphic conditions or the entire pressure-temperature-time (P-T-t) path of metamorphic rocks, especially those formed under ultrahigh-pressure (UHP) conditions. However, several problems need to be solved to get reliable estimates of metamorphic conditions. In this paper we present some examples of difficulties which can arise during the Raman spectroscopy study of solid inclusions from ultrahigh-pressure metamorphic rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chopin C (1984) Coesite and pure pyrope in high-grade blueschists of Western Alps: a first record and some consequences. Contrib Mineralog Petrol 86:107–118

    Article  CAS  Google Scholar 

  2. Smith DC (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature 310:641–644

    Article  CAS  Google Scholar 

  3. Sobolev NV, Shatsky VS (1990) Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature 343:742–746

    Article  CAS  Google Scholar 

  4. Boyer H, Smith DC, Chopin C, Lasnier B (1985) Raman microprobe (RMP) determinations of natural and synthetic coesite. Phys Chem Miner 12:45–48

    CAS  Google Scholar 

  5. Nasdala L, Hofmeister W, Harris JW, Glinnemann J (2005) Growth zoning and strain patterns inside diamond crystals as revealed by Raman maps. Am Mineralog 90:745–748

    Article  CAS  Google Scholar 

  6. Parkinson CD, Katayama I (1999) Present-day ultrahigh-pressure conditions of coesite inclusions in zircon and garnet: evidence from laser Raman microspectroscopy. Geology 27:979–982

    Article  CAS  Google Scholar 

  7. Sobolev NV, Fursenko BA, Goryainov SV, Shu JF, Hemley RJ, Mao HK, Boyd FR (2000) Fossilized high-pressure from the earths deep interior—the coesite-in-diamond barometer. Proc Natl Acad Sci U S A 97(22):11875–11879

    Google Scholar 

  8. Korsakov AV, Hutsebaut D, Theunissen K, Vandenabeele P, Stepanov AS (2007) Raman mapping of coesite inclusions in garnet from the Kokchetav Massif (Northern Kazakhstan). Spectrochim Acta A 68:1046–1052

    Article  Google Scholar 

  9. Korsakov AV, Theunissen K, Dobretsov NL (2010) Unusual garnet-coesite/quartz textures and the early exhumation of silica-rich UHP crustal rocks of Kulet (Kokchetav, Kazakhstan). J Metamorph Geol (in press)

  10. Parkinson CD (2000) Coesite inclusions and prograde compositional zonation of garnet in whiteschist of the HP-UHPM Kokchetav massif, Kazakhstan: a record of progressive UHP metamorphism. Lithos 52:215–233

    Article  CAS  Google Scholar 

  11. Ye K, Liou JB, Cong B, Maruyama S (2001) Overpressures induced by coesite-quartz transition in zircon. Am Mineralog 86:1151–1155

    CAS  Google Scholar 

  12. Korsakov AV, De Gussem K, Zhukov VP, Perraki M, Vandenabeelee P, Golovin AV (2009) Aragonite-calcite-dolomite relationships in UHPM polycrystalline carbonate inclusions from the Kokchetav Massif, Northern Kazakhstan. Eur J Mineral 21:1301–1311

    Article  CAS  Google Scholar 

  13. Hutsebaut D, Vandenabeele P, Moens L (2005) Evaluation of an accurate calibration and spectral standardization procedure for Raman spectroscopy. Analyst 130:1204–1214

    Article  CAS  Google Scholar 

  14. Korsakov AV, Shatsky VS, Sobolev NV, Zayachkovsky AA (2002) Garnet-biotiteclinozoisite gneisses: a new type of diamondiferous metamorphic rocks of the Kokchetav massif. Eur J Mineralog 14:915–929

    Article  CAS  Google Scholar 

  15. Korsakov AV, Theunissen K, Kozmenko OA, Ovchinnikov YI (2006) Reaction textures in clinozoisite gneisses. Russ Geol Geophys 47:497–510

    Google Scholar 

  16. Korsakov AV, Perraki M, Zhukov VP, De Gussem K, Vandenabeelee P, Tomilenko AA (2009) Is quartz a potential indicator of ultrahigh-pressure metamorphism? Laser Raman spectroscopy of quartz inclusions in ultrahigh-pressure garnets. Eur J Mineral 21:1313–1323

    Article  CAS  Google Scholar 

  17. OBrien PJ, Ziemann MA (2008) Preservation of coesite in exhumed eclogite: insights from Raman mapping. Eur J Mineralog 20:827–834

    Article  CAS  Google Scholar 

  18. Hermann J (2003) Carbon recycled into deep Earth: evidence from dolomite dissociation in subduction-zone rocks: comment and Reply. Geology 31:e4–e5

    Google Scholar 

  19. Korsakov AV, Hermann J (2006) Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks. Earth Planet Sci Lett 241:104–118

    Article  CAS  Google Scholar 

  20. Dobretsov NL, Sobolev NV, Shatsky VS, Coleman RG, Ernst WG (1995) Geotectonic evolution of diamondiferous paragneisses of the Kokchetav complex, Northern Kazakhstan—the geologic enigma of ultrahigh-pressure crustal rocks within Phanerozoic foldbelt. Isl Arc 4:267–279

    Article  Google Scholar 

  21. Shatsky VS, Sobolev NV, Vavilov MA (1995) Diamond-bearing metamorphic rocks of the Kokchetav massif (Northern Kazakhstan). Cambridge University Press, Cambridge, pp 427–455

    Google Scholar 

  22. Theunissen K, Dobretsov NL, Korsakov A, Travin A, Shatsky VS, Smirnova L, Boven A (2000) Two contrasting petrotectonic domains in the Kokchetav megamelange (north Kazakhstan): difference in exhumation mechanisms of ultrahigh-pressure crustal rocks, or a result of subsequent deformation? Isl Arc 9:284–303

    Article  CAS  Google Scholar 

  23. Theunissen K, Dobretsov NL, Shatsky VS, Smirnova L, Korsakov A (2000) The diamond- bearing Kokchetav UHP massif in Northern Kazakhstan: exhumation structure. Terra Nova 12:181–187

    Article  Google Scholar 

  24. Korsakov AV, Shatsky VS, Sobolev NV (1998) The first finding of coesite in eclogites of the Kokchetav massif. Dokl Akad Nauk 360:77–81

    CAS  Google Scholar 

  25. Bischoff WD, Sharma SK, Mackenzie FT (1985) Carbonate ion disorder in synthetic and biogenic magnesian calcites: a Raman spectral study. Am Mineralog 70:581–589

    CAS  Google Scholar 

  26. Burke E (2001) Raman microspectrometry of fluid inclusions. Lithos 55:139–158

    Article  CAS  Google Scholar 

  27. Frost RL, Dickfos M (2007) Hydrated double carbonates a Raman and infrared spectroscopic study. Polyhedron 26:45034508

    Google Scholar 

  28. Gillet P, Biellmann C, Reynard B, McMillan P (1993) Raman spectroscopic studies of carbonates part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Phys Chem Minerals 20:1–18

    CAS  Google Scholar 

  29. Liu LG, Mernagh TP (1990) Phase transitions and Raman spectra of calcite at high pressures and room temperature. Am Mineralog 75:801–806

    CAS  Google Scholar 

  30. Perraki M, Proyer A, Mposkos E, Kaindl R, Hoinkes G (2006) Raman micro-spectroscopy on diamond, graphite and other carbon polymorphs from the ultrahigh-pressure metamorphic Kimi Complex of the Rhodope Metamorphic Province, NE Greece. Earth Planet Sci Lett 241:672–685

    Article  CAS  Google Scholar 

  31. Scheetz BE, White WB (1977) Vibrational spectra of the alkaline earth double carbonates. Am Mineralog 62:36–50

    CAS  Google Scholar 

  32. Williams Q, Collerson B, Knittle E (1992) Vibrational spectra of magnesite (MgCO3) and calcite-Ill at high pressures. Am Mineralog 77:1158–1165

    CAS  Google Scholar 

  33. Edwards H, Villar S, Jehlicka J, Munshi T (2005) FTRaman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals. Spectrochimica Acta A 61:2273–2280

    Article  Google Scholar 

  34. Hemley RJ (1987) Pressure dependence of Raman spectra of SiO2 polymorphs: α-quartz, coesite, and stishovite. Terrapub, Tokyo-AGU, Washington, DC, pp 347–359

  35. Sharma SK, Mammone JF, Nicol MF (1981) Raman investigation of ring configurations in vitrous silica. Nature 292:140–141

    Article  CAS  Google Scholar 

  36. Zhang Y (1998) Mechanical and phase equilibria in inclusion-host systems. Earth Planet Sci Lett 157:209–222

    Article  CAS  Google Scholar 

  37. Schmidt C, Ziemann MA (2000) In-situ Raman spectroscopy of quartz: a pressure sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures. Am Mineralog 85:1725–1734

    CAS  Google Scholar 

  38. Zhukov VP, Korsakov AV (2010) Analysis of phase transformation in inclusions and obtaining of residual stress in multi-layered shells: thermomechanical model . Russ Geol Geophys (in press)

  39. Holland T, Powell R (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O-Na2O-CaO-MgO-MnO-FeO- Fe2O3 -Al2O3 -TiO2 -SiO2 -C-H2-O2. J Metamorph Geol 8:89–124

    Article  CAS  Google Scholar 

  40. Guiraud M, Powell R (2006) PVT relationships and mineral equilibria in inclusions in minerals. Earth Planet Sci Lett 244:683–694

    Article  CAS  Google Scholar 

  41. Barron LM, Mernagh TP, Barron BJ (2008) Using strain birefringence in diamond to estimate the remnant pressure on an inclusion. Aust J Earth Sci 55:159–165

    Article  Google Scholar 

  42. Howell D, Nasdala L (2008) Discussion and reply using strain birefringence in diamond to estimate the remnant pressure on an inclusion. Aust J Earth Sci 55:11751180

    Google Scholar 

  43. Nasdala L, Brenker FE, Glinnemann J, Hofmeister W, Gasparik T, Harris JW, Stachel T, Reese I (2003) Spectroscopic 2D-tomography: residual pressure and strain around mineral inclusions in diamonds. Eur J Mineralog 15:931–935

    Article  CAS  Google Scholar 

  44. Kamenetsky VS, Kamenetsky MB, Sharygin VV, Golovin AV (2007) Carbonate-chloride enrichment in fresh kimberlites of the Udachnaya-East pipe, Siberia: a clue to physical properties of kimberlite magmas? Geophys Res Lett 304(9):9316–9321

    Article  Google Scholar 

  45. Kamenetsky VS, Kamenetsky MB, Sobolev AV, Golovin AV, Demouchy S, Faure K, Sharygin VV, Kuzmin DV (2008) Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): types, compositions and origins. J Petrol 49(4):823–839

    Article  CAS  Google Scholar 

  46. Gillet P, Ingrin J, Chopin C (1984) Coesite in subducted continental crust: P-T history deduced from an elastic model. Earth Planet Sci Lett 70:426–436

    Article  Google Scholar 

  47. Van der Molen I, van Roermund HL (1986) The pressure path of solid inclusions in minerals the retention of coesite inclusions during uplift. Lithos 19:317–324

    Article  Google Scholar 

  48. Hermann J, Rubatto D, Korsakov A, Shatsky VS (2001) Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav massif, Kazakhstan). Contrib Mineralog Petrol 141:66–82

    CAS  Google Scholar 

  49. Rubatto D, Hermann J (2001) Exhumation as fast as subduction? Geology 29:3–6

    Article  CAS  Google Scholar 

  50. Stöckhert B, Trepmann CA, Massonne H (2009) Decrepitated UHP fluid inclusions: about diverse phase assemblages and extreme decompression rates (Erzgebirge, Germany). J Metamorph Geol 27:621–633

    Article  Google Scholar 

  51. Navon O (1991) Infrared determination of high internal pressures in diamond fluid inclusions. Nature 335:746–748

    Article  Google Scholar 

  52. Harker YD, She CY, Edwards DF (1970) Raman spectra of α-quartz under uniaxial stress. J Appl Physi 41(13):5274–5278

    Article  CAS  Google Scholar 

  53. Tekippe VJ, Ramdas AK, Rodriguez S (1973) Piezospectroscopic study of the Raman spectrum of α-quartz. Phys Rev B 8:706–716

    Article  CAS  Google Scholar 

  54. Xu J, Mao H, Hemley RJ (2002) The gem anvil cell: high-pressure behaviour of diamond and related materials. J Phys Condens Matter 14:11,549–11,552

    CAS  Google Scholar 

  55. Yamamoto J, Ando J, Kagi H, Inoue T, Yamada A, Yamazaki D, Irifune T (2008) In situ strength measurements on natural upper-mantle minerals. Phys Chem Miner 35:249–257

    Article  CAS  Google Scholar 

  56. Hermann J (2003) Experimental evidence for diamond-facies metamorphism in the Dora-Maira Massif. Lithos 70:163–182

    Article  CAS  Google Scholar 

  57. Yamamoto J, Kagi H (2008) Application of densimetry using micro-Raman spectroscopy for CO2 fluid inclusions: a probe for elastic strengths of mantle minerals. Eur J Mineralog 20:529–535

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Russian Foundation for Basic Research (10-05-00616-a, 10-05-00575-a), Russian Science Support Foundation. Financial support of the Belgian Science Policy—Interuniversity Attraction Poles Program P6/16—Belgian State is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Korsakov.

Appendix

Appendix

Multi-shell elastic model

We assume that a system consisting of j 0 layers is formed at the pressure P 0 and temperature T 0. The first substance occupies a sphere of the radius r 1, the second occupies the shell r 1 < r < r 2, the j-th substance occupies the shell r j−1 < r < r j . We also assume that all processes are slow, so that the temperature will be uniform and the body will maintain in mechanical equilibrium. The temperature of the formation is high and the stress tensor σ ik relaxes to an isotropic form: \( {\sigma _{rr}} = {\sigma _{\theta \theta }} = {\sigma _{\varphi \varphi }} = - {P_0} \). The radial displacement in initial stage is expressed by the formula

$$ {u_0} = {A_{0j}}r,\quad {A_{0j}} = - {{{P_0}} \mathord{\left/{\vphantom {{{P_0}} {\left( {3{K_{0j}}} \right)}}} \right.} {\left( {3{K_{0j}}} \right)}} $$

where K 0j is the bulk modulus in j-th substance in initial state. Let the system change to an environment with the pressure P and temperature T. We assume that during this change the system behaves as an elastic body. Below we indicate the component σ rr of stress tensor as σ r and \( {\sigma _{\theta \theta }} = {\sigma _{\varphi \varphi }} \) as σ t . It is well known [36] that the conditions of equilibrium give the expression for radial displacement \( u(r) = {C_1}r + {C_2}/{r_2} \) in each layer. In our case it is more convenient to write for j-th substance

$$ u = \left( {{A_j} + {B_j}\frac{{r_{j - 1}^3}}{{{r^3}}}} \right) r $$

In this notation the total displacement is u tot = u + u 0. For the stress tensor we have

$$ \begin{array}{*{20}{c}} {{\sigma_r} = {3}{K_j}\left( {{A_{0j}} + {A_j} - {\varepsilon_j}} \right) - 4{G_j}{B_j}\frac{{r_{j - 1}^3}}{{{r^3}}}} \hfill \\{{\sigma_t} = {3}{K_j}\left( {{A_{0j}} + {A_j} - {\varepsilon_j}} \right) + {2}{G_j}{B_j}\frac{{r_{j - 1}^3}}{{{r^3}}}} \hfill \\\end{array} $$

where ε j is the coefficient of linear expansion due to temperature change and phase transformation, A, B, and C are three constants and G is shear modulus. Note, that ε j can be written as ε j  = (ρ 0j /ρ j )1/3 − 1, where ρ 0j is the substance density at initial temperature T 0 and zero pressure and ρ j is the substance density at final temperature T and (may be) another phase state also for zero pressure.

The conditions of finiteness of displacement in the center, continuity of radial displacement u, and normal stress tensor component σ r at the boundary between layers and the condition on the outer boundary of the body may be expressed thus:

$$ \begin{array}{*{20}{c}} {{B_1} = 0} \\{{A_j} + {B_j}{w_j} = {A_{j + 1}} + {B_{j + 1}},j = 1,...,j0 - 1} \\{3{K_j}\left( {{A_j} + {A_{0j}} - {\varepsilon_j}} \right) - 4{G_j}{B_j}{w_j} = 3{K_{j + 1}}\left( {{A_{j + 1}} + {A_{0j + 1}} - {\varepsilon_{j + 1}}} \right) - 4{G_{j + 1}}{B_{j + 1}},{\hbox{J}} = 1,...{,_{j0}} - 1} \\{3{K_{j0}}\left( {{A_{j0}} + {A_{{0_{j0}}}} - {\varepsilon_{j0}}} \right) - 4{G_{j0}}{B_{j0}}{w_{j0}} = - P} \\\end{array} $$

where \( {{{w_j} = r{{_j^3}_{ - 1}}} \mathord{\left/{\vphantom {{{w_j} = r{{_j^3}_{ - 1}}} {r_j^3}}} \right.\kern-\nulldelimiterspace} {r_j^3}} \) We solve this system numerically.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korsakov, A.V., Zhukov, V.P. & Vandenabeele, P. Raman-based geobarometry of ultrahigh-pressure metamorphic rocks: applications, problems, and perspectives. Anal Bioanal Chem 397, 2739–2752 (2010). https://doi.org/10.1007/s00216-010-3831-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3831-4

Keywords

Navigation