Skip to main content
Log in

Multi-residue determination of 130 multiclass pesticides in fruits and vegetables by gas chromatography coupled to triple quadrupole tandem mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A multi-residue method has been developed and validated for the simultaneous quantification and confirmation of around 130 multiclass pesticides in orange, nectarine and spinach samples by GC-MS/MS with a triple quadrupole analyzer. Compounds have been selected from different chemical families including insecticides, herbicides, fungicides and acaricides. Three isotopically labeled standards have been used as surrogates in order to improve accurate quantitation. Samples were extracted by using accelerated solvent extraction (ASE) with ethyl acetate. In the case of spinach, an additional clean-up step by gel permeation chromatography was applied. Determination was performed by GC-MS/MS in electron ionization mode acquiring two MS/MS transitions for each analyte. The intensity ratio between quantitation transition (Q) and identification transition (q) was used as confirmatory parameter (Q/q ratio). Accuracy and precision were evaluated by means of recovery experiments in orange, nectarine, and spinach samples spiked at two concentration levels (0.01 and 0.05 mg/kg). Recoveries were, in most cases, between 70% and 120% and RSD were below 20%. The limits of quantification objective for which the method was satisfactorily validated in the three samples matrices were for most pesticides 0.01 mg/kg. Matrix effects over the GC-MS/MS determination were tested by comparison of reference standards in pure solvent with matrix-matched standards of each matrix. Data obtained showed enhancement of signal for the majority of analytes in the three matrices investigated. Consequently, in order to reduce the systematic error due to this effect, quantification was performed using matrix-matched standard calibration curves. The matrix effect study was extended to other food matrices such as raisin, paprika, cabbage, pear, rice, legume, and gherkin, showing in all cases a similar signal enhancement effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Regulation (EC) No 396/2005 of the European parliament and of the council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC

  2. US EPA (2009) http://www.epa.gov/pesticides.htm. Accessed 15 May 2009

  3. European commission (2009) http://ec.europa.eu/food/plant/protection/pesticides/index_en.htm. Accessed 19 May 2009

  4. Aulakh RS, Gill JPS, Bedi JS, Sharma JK, Joia BS, Ockerman HW (2006) J Sci Food Agr 86:741–744

    Article  CAS  Google Scholar 

  5. Buldini PL, Ricci L, Sharma JL (2002) J Chromatogr A 975:47–70

    Article  CAS  Google Scholar 

  6. Hernández F, Pozo OJ, Sancho JV, Bijlsma L, Barreda M, Pitarch E (2006) J Chromatogr A 1109:242–252

    Article  Google Scholar 

  7. Hopper ML (1999) J Chromatogr A 840:93–105

    Article  CAS  Google Scholar 

  8. Sparr Eskilsson C, Björklund E (2000) J Chromatogr A 902:227–250

    Article  CAS  Google Scholar 

  9. Barker SA (2000) J Chromatogr A 885:115–127

    Article  CAS  Google Scholar 

  10. Jira W, Ziegenhals K, Speer K (2008) Food Addit Contam A 25:704–713

    Article  CAS  Google Scholar 

  11. Jira W (2004) Eur Food Res Technol 218:208–212

    Article  CAS  Google Scholar 

  12. Hu B, Song W, Xie L, Shao T (2008) Chin J Chromatogr 26:22–28

    Article  CAS  Google Scholar 

  13. Gilbert-López B, García-Reyes JF, Molina-Díaz A (2009) Talanta 79:109–128

    Article  Google Scholar 

  14. Lehotay SJ, De Kok A, Hiemstra M, Van Bodegraven P (2005) J AOAC Int 88:595–614

    CAS  Google Scholar 

  15. Lehotay SJ, Maštovská K, Lightfield AR (2005) J AOAC Int 88:615–629

    CAS  Google Scholar 

  16. Lehotay SJ (2007) J AOAC Int 90:485–520

    CAS  Google Scholar 

  17. Sandra P, Tienpont B, David F (2003) J Chromatogr A 1000:299–309

    Article  CAS  Google Scholar 

  18. Zhang W, Chu X, Cai H, An J, Li C (2006) Rapid Commun Mass Spectrom 20:609–617

    Article  CAS  Google Scholar 

  19. Liu L, Hashi Y, Qin Y, Zhou H, Lin J (2007) J Chromatogr B 845:61–68

    Article  CAS  Google Scholar 

  20. Mol HGJ, Rooseboom A, Van Dam R, Roding M, Arondeus K, Sunarto S (2007) Anal Bioanal Chem 389:1715–1754

    Article  CAS  Google Scholar 

  21. Xu X, Li L, Zhong W, He Y (2009) Chromatographia 70:173–183

    Article  CAS  Google Scholar 

  22. Hernández F, Portolés T, Pitarch E, López FJ, Beltrán J, Vázquez C (2005) Anal Chem 77:7662–7672

    Article  Google Scholar 

  23. Commission decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results

  24. Garrido Frenich A, Martínez Vidal JL, Cruz Sicilia AD, González Rodríguez MJ, Plaza Bolaños P (2006) Anal Chim Acta 558:42–52

    Article  CAS  Google Scholar 

  25. Garrido Frenich A, Romero González R, Martínez Vidal JL, Plaza Bolaños P, Cuadros Rodríguez L, Herrera Abdo MA (2006) J Chromatogr A 1133:315–321

    Article  CAS  Google Scholar 

  26. Garrido Frenich A, Plaza Bolaños P, Martínez Vidal JL (2007) J Chromatogr A 1153:194–202

    Article  Google Scholar 

  27. Walorczyk S (2007) J Chromatogr A 1165:200–212

    Article  CAS  Google Scholar 

  28. Walorczyk S (2008) J Chromatogr A 1208:202–214

    Article  CAS  Google Scholar 

  29. Plaza Bolaños P, Garrido Frenich A, Martínez Vidal JL (2007) J Chromatogr A 1167:9–17

    Article  Google Scholar 

  30. Garrido Frenich A, González-Rodríguez MJ, Arrebola FJ, Martínez Vidal JL (2005) Anal Chem 77:4640–4648

    Article  Google Scholar 

  31. Martínez Vidal JL, Arrebola Liébanas FJ, González Rodríguez MJ, Garrido Frenich A, Fernández Moreno JL (2006) Rapid Commun Mass Spectrom 20:365–375

    Article  Google Scholar 

  32. Walorczyk S, Gnusowski B (2006) J Chromatogr A 1128:236–243

    Article  CAS  Google Scholar 

  33. Plaza Bolaños P, Fernández Moreno JL, Shtereva DD, Garrido Frenich A, Martínez Vidal JL (2007) Rapid Commun Mass Spectrom 21:2282–2294

    Article  Google Scholar 

  34. Fernández Moreno JL, Garrido Frenich A, Plaza Bolaños P, Martínez Vidal JL (2008) J Mass Spectrom 43:1235–1254

    Article  Google Scholar 

  35. Walorczyk S (2008) Rapid Commun Mass Spectrom 22:3791–3801

    Article  CAS  Google Scholar 

  36. Barreda M, López FJ, Villarroya M, Beltran J, García-Baudín JM, Hernández F (2006) J AOAC Int 89:1080–1087

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of Generalitat Valenciana, as research group of excellence PROMETEO/2009/054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cervera, M.I., Medina, C., Portolés, T. et al. Multi-residue determination of 130 multiclass pesticides in fruits and vegetables by gas chromatography coupled to triple quadrupole tandem mass spectrometry. Anal Bioanal Chem 397, 2873–2891 (2010). https://doi.org/10.1007/s00216-010-3597-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3597-8

Keywords

Navigation