Skip to main content
Log in

Analysis of polybrominated diphenyl ethers (PBDEs) by liquid chromatography with negative-ion atmospheric pressure photoionization tandem mass spectrometry (LC/NI-APPI/MS/MS): application to house dust

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Eight polybrominated diphenyl ether (PBDE) congeners of primary interest to the US EPA were separated using reverse-phase liquid chromatography on an octadecylsilane column. BDE-28, BDE-47, BDE-99, BDE-100, BDE-153, BDE-154, BDE-183, and BDE-209 were baseline-resolved under isocratic conditions in 92:8 methanol/water (v/v). Negative-ion atmospheric pressure photoionization (NI-APPI) with a toluene dopant produced precursor ions corresponding to [M–Br+O] for the eight congeners studied. Each congener was quantified by tandem mass spectrometry through a unique multiple reaction monitoring (MRM) transition. On-column limits of detection were between 2.4 and 27.8 pg for the eight congeners studied, with an intra-day method precision of 9%. The LC/NI-APPI/MS/MS method was validated for the analysis of the eight PBDE congeners in NIST SRM 2585 (Organics in House Dust). Pressurized liquid extraction (PLE) with subsequent LC/NI-APPI/MS/MS analysis afforded quantitative recovery for all eight PBDE congeners with recoveries ranging from 92.7 to 113%. The liquid-phase separation of the LC/NI-APPI/MS/MS method is not prone to the thermal degradation issues that plague splitless GC based analyses of highly brominated PBDEs such as BDE-209.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–h

Similar content being viewed by others

References

  1. La Guardia MJ, Hale RC, Harvey E (2006) Environ Sci Technol 40:6267–6254

    Article  CAS  Google Scholar 

  2. Sjödin A, Jokobsson E, Kierkegaard A, Marsh G, Sellström U (1998) J Chromatogr A 822:83–89

    Article  Google Scholar 

  3. Hale RC, La Guardia MJ, Harvey E, Mainor TM (2002) Chemosphere 46:729–735

    Article  CAS  Google Scholar 

  4. Renner R (2004) Environ Sci Technol 38:14A

    Google Scholar 

  5. BSEF (2001) Major brominated flame retardants volume estimates. Bromine Science and Environmental Forum, Brussels (see http://www.bsef.com/docs/BFR_vols_2001.doc, last accessed 28 April 2008)

  6. Stapleton H, Letcher R, Baker J (2002) Organohal Compd 58:201–204

    Google Scholar 

  7. Alaee M, Wenning RJ (2002) Chemosphere 46:579–796

    Article  CAS  Google Scholar 

  8. de Wit CA (2002) Chemosphere 46:583–624

    Article  Google Scholar 

  9. Lectcher R, Behnisch P (2003) Environ Int 29:663–885

    Article  CAS  Google Scholar 

  10. Benedict RT, Stapleton HM, Letcher RJ, Mitchelmore CL (2007) Chemosphere 69:987–993

    Article  CAS  Google Scholar 

  11. Betts KS (2004) Environ Sci Technol 38:50A–51A

    Article  CAS  Google Scholar 

  12. Gouin T, Harner T, Daly GL, Wania F, Mackay D, Jones KC (2005) Atmos Environ Part A 39:151–166

    Google Scholar 

  13. Mazdai A, Dodder NG, Abernathy MP, Hites RA, Bigsby RM (2003) Environ Health Perspect 111:1249–1252

    CAS  Google Scholar 

  14. Petreas M, She J, Brown R, Winkler J, Winham G, Rogers E, Zhao G, Bhatia R, Charles MJ (2003) Environ Health Perspect 111:1175–1179

    CAS  Google Scholar 

  15. Sellström U, De Wit CA, Lundgren N, Tysklind M (2005) Environ Sci Technol 39:9064–9070

    Article  CAS  Google Scholar 

  16. Thuresson K, Höglund P, Hagmar L, Sjödin A, Bergman A, Jakobsson E (2006) Environ Health Perspect 114:176–181

    CAS  Google Scholar 

  17. Bocio A, Llobet JM, Domingo JL, Corbella J, Teixidó A, Casas C (2003) J Agric Food Chem 51:3191–3195

    Article  CAS  Google Scholar 

  18. Schecter AN, Päpke O, Harris RT, Tung KC, Musumba A, Olson J, Birnbaum L (2006) Environ Health Perspect 114:1515–1520

    Article  CAS  Google Scholar 

  19. Schecter A, Päpke O, Tung K, Staskal D, Birnbaum L (2004) Environ Sci Technol 38:5306–5311

    Article  CAS  Google Scholar 

  20. Allen JG, McClean MD, Stapleton HM, Nelson JW, Webster TF (2007) Environ Sci Technol 41:4574–4579

    Article  CAS  Google Scholar 

  21. Stapleton HM, Dodder NG, Offenberg JH, Schantz MM, Wise SA (2005) Environ Sci Technol 39:925–931

    Article  CAS  Google Scholar 

  22. Jones-Otazo HA, Clarke JP, Diamond ML, Archbold JA, Ferguson G, Harner T, Richardson GM, Ryan JJ, Wilford B (2005) Environ Sci Technol 39:5121–5530

    Article  CAS  Google Scholar 

  23. Stapleton HM, Harner T, Shoeib M, Keller JM, Schantz MM, Leigh SD, Wise SA (2006) Anal Bioanal Chem 384:791–800

    Article  CAS  Google Scholar 

  24. Harrad S, Hazrati S, Ibarra C (2006) Environ Sci Technol 40:4633–4638

    Article  CAS  Google Scholar 

  25. Tan J, Cheng SM, Loganath A, Chong YS, Obbard JP (2007) Chemosphere 66:985–992

    Article  CAS  Google Scholar 

  26. Karlsson M, Julander A, van Bavel B, Hardel L (2007) Environ Int 33:62–69

    Article  CAS  Google Scholar 

  27. Wu N, Herrmann T, Paepke O, Tickner J, Hale R, Harvey E, La Guardia MJ, McClean MD, Webster TF (2007) Environ Sci Technol 41:1584–1589

    Article  CAS  Google Scholar 

  28. Schecter A, Päpke O, Joseph JE, Tung K (2005) J Toxicol Environ Health 68:501–513

    Article  CAS  Google Scholar 

  29. Tulve NS, Suggs JC, McCurdy T, Cohen Hubal EA, Moya J (2002) J Expo Anal Environ Epidemiol 12:259–264

    Article  Google Scholar 

  30. Covaci A, Voorspoels S, Ramos L, Neels H, Blust R (2007) J Chromatogr A 1153:145–171

    Article  CAS  Google Scholar 

  31. Stapleton HM (2006) Anal Bioanal Chem 386:807–817

    Article  CAS  Google Scholar 

  32. Björklund J, Tollbäck P, Östman C (2003) J Mass Spectrom 38:394–400

    Article  CAS  Google Scholar 

  33. Ackerman LK, Wilson GR, Simonich SL (2007) Anal Chem 77:1979–1987

    Article  CAS  Google Scholar 

  34. Regueiro J, Llompart M, Garcia-Jares C, Cela R (2007) Anal Bioanal Chem 388:1095–1107

    Article  CAS  Google Scholar 

  35. Björklund J, Tollbäck P, Hiärne C, Dyremark E, Östman C (2004) J Chromatogr A 1041:201–210

    Article  CAS  Google Scholar 

  36. Rogers E, Petreas M, Park J, Zhao G, Charles MJ (2004) J Chromatogr B 813:269–285

    Article  CAS  Google Scholar 

  37. Covaci A, de Boer J, Ryan JJ, Voorspoels S, Schepens P (2002) Anal Chem 74:790–798

    Article  CAS  Google Scholar 

  38. Worall K, Newton A, Van Bavel B, Pettersson A, Linstrom G, Reiner E, Macpherson K, Kolic T, Ordsmith N, Catterall S (2004) Organohalog Compd 66:186–190

    Google Scholar 

  39. Schummler M, Brandl F, Mäurer A, van Eldik R (2005) J Chromatogr A 1064:39–51

    Article  CAS  Google Scholar 

  40. Pohlein M, Llopis AS, Wolf M, Van Eldik R (2005) J Chromatogr A 1066:111–117

    Article  CAS  Google Scholar 

  41. Debrauwer L, Riu A, Jouahri M, Rathahao E, Jouanin I, Antignac J, Cariou R, Le Bizec B, Zalko D (2005) J Chromatogr A 1082:98–109

    Article  CAS  Google Scholar 

  42. Cariou R, Antignac J, Debrauwer L, Maume D, Fabrice M, Zalko D, Le Bizec B, Andre F (2006) J Chromatogr Sci 44:489–497

    CAS  Google Scholar 

  43. Basso E, Marotta E, Seraglia R, Tubaro M, Traldi P (2003) J Mass Spectrom 38:1113–1115

    Article  CAS  Google Scholar 

  44. Riu A, Zalko D, Debrauwer L (2006) Rapid Commun Mass Spectrom 20:2133–2142

    Article  CAS  Google Scholar 

  45. Short LC, Cai S, Syage JA (2007) J Am Soc Mass Spectrom 18:589–599

    Article  CAS  Google Scholar 

  46. Robb DB, Blades MW (2005) J Am Soc Mass Spectrom 16:1275–1290

    Article  CAS  Google Scholar 

  47. Kauppila TJ, Kotiaho T, Kostiainen R, Bruins AP (2004) J Am Soc Mass Spectrom 15:203–211

    Article  CAS  Google Scholar 

  48. Gómara B, Herrero L, González MJ (2007) Anal Chim Acta 597:121–128

    Article  CAS  Google Scholar 

  49. Stapleton H, Keller JM, Schantz MM, Kucklick JR, Leigh SD, Wise SA (2007) Anal Bioanal Chem 387:2365–2379

    Article  CAS  Google Scholar 

  50. De Boer J, Cofino WP (2002) Chemosphere 46:625–633

    Article  Google Scholar 

  51. Thomsen C, Leknes H, Lundanes E, Becher G (2001) J Chromatogr A 923:299–304

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Michelle Schantz at NIST for providing SRM 2585. This material is based upon work supported by the National Science Foundation under grant numbers CHE-0718530 and CHE-0619394.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony F. Lagalante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagalante, A.F., Oswald, T.D. Analysis of polybrominated diphenyl ethers (PBDEs) by liquid chromatography with negative-ion atmospheric pressure photoionization tandem mass spectrometry (LC/NI-APPI/MS/MS): application to house dust. Anal Bioanal Chem 391, 2249–2256 (2008). https://doi.org/10.1007/s00216-008-2156-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2156-z

Keywords

Navigation