Skip to main content
Log in

Olfactory receptors: molecular basis for recognition and discrimination of odors

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The daunting task of our nose to detect and discriminate among thousands of low-molecular-weight organic compounds with diverse chemical structures and properties requires an enormous molecular recognition capacity. This is based on distinct proteins, capable of recognizing and binding odorous compounds, including odorant-binding proteins, which are supposed to shuttle odorous compounds through the nasal mucus, and most notably the odorant receptors, which are heptahelical membrane proteins coupling via G-proteins onto intracellular transduction cascades. From more than a thousand genes each olfactory neuron is supposed to express only one receptor subtype. Receptors appear to be selective but rather non-specific—i.e. a distinct odorant activates multiple receptors and individual receptors respond to multiple odorants. It is the molecular receptive range of its receptor type which determines the reaction spectrum of a sensory neuron. Populations of cells equipped with the same receptor type project their axons to common glomeruli, thereby transmitting the molecular receptive range of a receptor type into the receptive field of glomerulus. Recent insight into the molecular basis of odor recognition and the combinatorial coding principles of the olfactory system may provide some clues for the design and development of technical sensors, electronic noses. In this review more emphasis has been placed on physiological rather than analytical aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Farbman AI (1992) Cell biology of olfaction. Cambridge University Press, UK

  2. Doty RL (1995) Handbook of olfaction and gustation. Marcel Dekker, New York

  3. Finger TE, Restrepo D, Silver W (2000) The neurobiology of taste and smell. Wiley, New York

  4. Löbel D, Strotmann J, Jacob M, Breer H (2001) Chem Senses 26:673–680

    Article  PubMed  Google Scholar 

  5. Buck L, Axel R (1991) Cell 65:175–187

    CAS  PubMed  Google Scholar 

  6. Bockaert J, Pin JP (1999) EMBO J 18:1723–1729

    CAS  PubMed  Google Scholar 

  7. Zhang X, Firestein S (2002) Nat Neurosci 5:124–133

    CAS  PubMed  Google Scholar 

  8. Zozulya S, Echeverri F, Nguyen T (2001) Genome Biol 2:18.1–18.12

    Article  Google Scholar 

  9. Rouquier S, Taviaux S, Trask BJ, Brand-Arpon V, van den Engh G, Demaille J, Giorgi D (1998) Nat Genet 18:243–250

    CAS  PubMed  Google Scholar 

  10. Rouquier S, Blancher A, Giorgi D (2000) Proc Natl Acad Sci USA 97:2870–2874

    CAS  PubMed  Google Scholar 

  11. Gilad Y, Segre D, Skorecki K, Nachman MW, Lancet D, Sharon D (2000) Nat Genet 26:221–224

    Article  CAS  PubMed  Google Scholar 

  12. Pilpel Y, Sosinsky A, Lancet D (1999) Essays Biochem 33:93–104

    Google Scholar 

  13. Wang J, Luthey-Schulten ZA, Suslick KS (2003) Prod Natl Acad Sci USA 100:3035–3039

    Article  CAS  Google Scholar 

  14. Troemel ER (1999) Bioessays 21:1011–1020

    Article  CAS  PubMed  Google Scholar 

  15. Vosshall LB, Amrein H, Morozov PS et al (1999) Cell 96:725–736

    CAS  PubMed  Google Scholar 

  16. Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, Chrystal MA, Cravchik A, Collins FH, Robertson HM, Zwiebel LJ (2002) Science 298:1756–178

    Article  PubMed  Google Scholar 

  17. Krieger J, Raming K, Dewer YME, Bette S, Conzelmann S, Breer H (2002) Eur J Neurosci 16:619–628

    Article  PubMed  Google Scholar 

  18. Krieger J, Klink O, Mohl, C, Raming K, Breer H (2003) J Comp Physiol A (in press) DOI 10.1007/s00359-003-0427-x

  19. Freitag J, Beck A, Ludwig G, v Bucholtz L, Breer H (1999) Gene 226:165–174

    Article  CAS  PubMed  Google Scholar 

  20. Dryer L, Berghard A (1999) Trends Pharm Sci 20:413–417

    Article  CAS  PubMed  Google Scholar 

  21. Freitag J, Ludwig G, Andreini I, Rössler P, Breer H (1998) J Comp Physiol A 183:635–650

    Article  CAS  PubMed  Google Scholar 

  22. Freitag J, Krieger J, Strotmann J, Breer H (1995) Neuron 15:1383–1392

    CAS  PubMed  Google Scholar 

  23. Mezler M, Fleischer J, Breer H (2001) J Exp Biol 204:2987–2997

    CAS  PubMed  Google Scholar 

  24. Chess A, Simon I, Cedar H, Axel R (1994) Cell 78:823–834

    CAS  PubMed  Google Scholar 

  25. Ishi T, Serizawa T, Kohda A, Nakatani H, Shiroishi T, Okumura K, Iwakura Y, Nagawa F, Tsuboi A, Sakano H (2001) Genes Cells 6:71–78

    Article  PubMed  Google Scholar 

  26. Tsuboi A, Yoshihara S, Yamazaki N, Kasai H, Asai-Tsuboi H, Komatsu M, Serizawa S, Ishii T, Matsuda Y, Nagawa F et al (1999) J Neurosci 19:8409–8418

    CAS  PubMed  Google Scholar 

  27. Hoppe R, Weimer M, Beck A, Breer H, Strotmann J (2000) Genomics 66:284–295

    Article  CAS  PubMed  Google Scholar 

  28. Sosinsky A, Glusman G, Lancet D (2000) Genomics 70:49–61

    Article  CAS  PubMed  Google Scholar 

  29. Vassali A, Rothmann A, Feinstein P, Zapotocky M, Mombaerts P (2002) Neuron 35:681–696

    PubMed  Google Scholar 

  30. Zhao H, Ivic L, Otaki JM, Hashimoto M, Mikoshiba K, Firestein S (1998) Science 279:237–242

    CAS  PubMed  Google Scholar 

  31. Krautwurst D, Yau KW, Reed R (1998) Cell 95:917–926

    CAS  PubMed  Google Scholar 

  32. Wetzel CH, Oles M, Wellerdieck C, Kuczkowiak M, Gisselman G, Hatt H (1999) J Neurosci 19:7426–7433

    CAS  PubMed  Google Scholar 

  33. Kajiya K, Inaki K, Tanaka M, Haga T, Kataoka H, Touhara K (2001) J Neurosci 21:6018–6025

    CAS  PubMed  Google Scholar 

  34. Araneda RC, Kini AD, Firestein S (2000) Nat Neurosci 3:1248–1255

    Article  CAS  PubMed  Google Scholar 

  35. Malnic B, Hirono J, Sato T, Buck LB (1999) Cell 96:713–723

    CAS  PubMed  Google Scholar 

  36. Touhara K, Sengoku S, Inaki K, Tsuboi A, Hirono J, Sato T, Sakano H, Haga T (1999) Proc Natl Acad Sci USA 96:4040–4045

    Article  CAS  PubMed  Google Scholar 

  37. Ressler KJ, Sullivan SL, Buck LB (1993) Cell 73:597–609

    CAS  PubMed  Google Scholar 

  38. Strotmann J, Wanner I, Helfrich T, Breer H (1995) Eur J Neurosci 7:492–500

    CAS  PubMed  Google Scholar 

  39. Strotmann J, Wanner I, Helfrich T, Beck A, Breer H (1994) Cell Tissue Res 278:11–20

    Article  CAS  PubMed  Google Scholar 

  40. Strotmann J, Conzelmann S, Beck A, Feinstein P, Breer H, Mombaerts P (2000) J Neurosci 20:6927–6938

    CAS  PubMed  Google Scholar 

  41. Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R (1996) Cell 87:675–686

    CAS  PubMed  Google Scholar 

  42. Katz LC, Shatz CJ (1996) Science 274:1133–1138

    Article  CAS  PubMed  Google Scholar 

  43. Conzelmann S, Malun D, Breer H, Strotmann J (2001) Eur J Neurosci 14:1623–1632

    Article  CAS  PubMed  Google Scholar 

  44. Maher BA (2002) Scientist 16:38–41

    Google Scholar 

  45. Wu TZ (1999) Biosens Bioelectron 14:9–18

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Breer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breer, H. Olfactory receptors: molecular basis for recognition and discrimination of odors. Anal Bioanal Chem 377, 427–433 (2003). https://doi.org/10.1007/s00216-003-2113-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2113-9

Keywords

Navigation